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INTRODUCTION 

The long-term goal of our research is to develop computer-aided diagnosis (CAD) techniques to 

improve the detection and diagnosis of breast cancer. The hypothesis to be tested in the present project 

is that radiologists' ability to differentiate malignant from benign breast lesions can be improved by 

integrating radiologists' perceptual expertise in the interpretation of mammograms with the advantages 

of automated computer classification. This project has three SOW Tasks: 

Task 1.   To combine radiologist-extracted Breast Imaging Reporting and Data System (BI-RADS) 

features with image features extracted by a computer to classify malignant and benign 

clustered microcalcifications in mammograms. 

Task 2.   To optimally combine radiologists' diagnosis with the result of computer classification. 

Task 3.   To optimize computer classification for full-field digital mammograms. 

BODY 

1.      Investigation related to BI-RADS 

We reported last year that we have found radiologists-provided description of breast 

calcifications in mammograms using the BI-RADS lexicon tends to improve the performance of 

computer classification of calcifications as malignant or benign. However, variability among 

radiologists' use of the BI-RADS tends to diminish this gain in performance. Specifically, we have 

found little improvement in performance when a computer technique trained on one radiologist's BI- 

RADS data is tested on a different radiologist's BI-RADS data. This implies that the approach of adding 

radiologists-provided BI-RADS lesion descriptions to computer analysis of the lesion may be of limited 

practical value because of variability in radiologists' use of the BI-RADS lesion-description lexicon. We 

have stopped further work on this topic. However, we remain interested in the clinical use of BI-RADS. 

In particular, in interfacing our computer technique for classifying breast calcifications as malignant or 

benign (SOW Task 3) with radiologists, we present the clinical task in terms of BI-RADS assessment 

categories, as in typical clinical practice. In addition, we are interested in the effect (and perhaps the 
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validity) of using BI-RADS final assessments as categorical data for ROC analysis, as is a common 

practice in research. No specific results to report at this time. 

2.      An analytical comparison of four methods for combining multiple sources of diagnostic 

information 

This particular work is within the scope of SOW Task 2. Last year we reported a work on an 

analytical comparison—based on receiver operating characteristic (ROC) analysis [1]—of four methods 

for combing multiple diagnostic assessments of the same patient. That work was motivated by ad hoc 

use of various simple methods in CAD research, such as taking the simple average [2], or taking the 

result of the one image that is most indicative of a disease outcome (e.g., malignancy) [3]. The objective 

of that work was to understand the merit of these methods from a theoretical perspective. In the work 

reported last year we made two assumptions. One assumption was that diagnostic information derived 

from multiple images of the same patient can be described by the same binormal ROC curve [4]; the 

second assumptions was that diagnostic information derived from multiple images of the same patient is 

uncorrelated. We have continued this work by eliminating the second assumption to make the work 

more general: multiple images of the same patients such as mediolateral-oblique (MLO) and 

craniocaudal (CC) view mammograms are generally almost always correlated. We have found that our 

previous results hold in a special situation when correlation strength is zero.   Those previous results 

were that the method of the simple average of data from multiple images of the same patient always 

produces an improved ROC curve over data from a single image. However, the method of taking data 

from the one image that is most indicative of malignancy and even the method of taking data from the 

one image that is least indicative of malignancy can also improve the ROC curve and, under certain 

conditions, outperform the method of the simple average to become the preferred method. Results 

taking correlation into account are similar. An important new finding is that as correlation strength 

increases, it becomes less often that the method of simple average produces the best ROC curve and it 

becomes more often that the method of taking data from the one image that is most, or least, indicative 

of malignancy produces the best ROC curve. These new findings are more general than previously 

reported and, therefore, more practically instructive. We will continue this work by removing the 

remaining assumption to make the work even more general. The earlier work was presented at the 



RSNA meeting in 2003 [Liu, 2005 #37]. A peer-reviewed publication ofthat work appears in medical 

Physics [6]. The new work on combining correlated diagnostic decision variables will be presented at 

the RSNA meeting in 2004 [7] and the SPIE Medical Imaging Conference in 2005 [Liu, 2005 #47]. A 

manuscript describing this work is in final preparation and will be submitted to medical physics. 

3. Investigation of a quadratic method for combining multiple sources of diagnostic 

information 

This particular work is within the scope of SOW Task 2. In 2002 we reported a work developing 

an "optimal" method for combining quantitative diagnostic assessments made by a radiologist and by a 

computer, based on a bivariate binormal model that was originally developed for ROC analysis [9]. 

This method takes into account the individual accuracy of the radiologist and the computer, as well as 

the correlation between their diagnostic assessments. This method is optimal if the bivariate binormal 

model is appropriate for describing the underlying data, which we expect to be generally true, and if 

there are enough data to estimate model parameters accurately. This method is referred to as quadratic 

averaging (or quadratic for short) because it involves quadratic terms (i.e., to the power of 2) in 

averaging decision variables. Previously we claimed this method to be optimal based on theoretical 

grounds, under the conditions stated above [10]. We have now shown experimentally that this claim is 

indeed true. To demonstrate "optimality", it is necessary to calculate the ideal observer performance. 

However, the ideal observer performance is difficult to calculate analytically because it involves 

elliptical integration. We have now circumvented this difficulty by calculating the ideal observer 

performance numerically from a large sample of data in simulation studies. We have shown that as the 

amount of data increases, results of the quadratic method asymptotically approach performance of the 

ideal observer. A manuscript describing this work is in its final stage of preparation and will be 

submitted to academic Radiology. 

4. Computer-aided diagnosis of malignant and benign calcifications in full-field digital 

mammograms 

This particular work is within the scope of SOW Task 3. Last year we reported an evaluation on 

full-field digital mammograms of a computer technique that classifies calcifications in mammograms as 

malignant or benign that we developed previously on digitized screen-film mammograms. That study 



was significant because it was an independent evaluation in that: (1) the computer technique was 

developed on digitized screen-film images and evaluated on full-field digital images, (2) the computer 

technique was developed on older cases and evaluated on newer, completely different, cases, and (3) the 

computer technique was developed based on manual identification of individual calcifications and 

evaluated based on automatic detection of individual calcifications by the computer with radiologists' 

input limited to the general location of a group of calcifications. We found that the computer technique 

achieved virtually the same performance on full-field digital mammograms as on digitized screen-film 

mammograms that we reported previously in the literature. Further, the computer technique achieved 

highly consistent performance despite variability in radiologists' performance and in their input to the 

computer. Those results were obtained on 49 cases of calcification lesions that were deemed clinically 

suspicious for malignancy and biopsied. We have now performed a similar analysis on cases of 

calcifications that were clinically not biopsied and have found similar results. The significance of the 

present study is that for our computer technique to help radiologists reduce the number of biopsies 

performed on benign calcifications, it is necessary for the computer technique to advice radiologists not 

to biopsy some truly benign calcifications that radiologists may consider suspicious for malignancy, and 

also consistently advice radiologists not to biopsy truly benign calcifications that radiologists consider 

safe to follow. To further continue this research, we plan to use the computer technique to analyze 

consecutive mammograms of diagnostic studies (as opposed to screening mammograms) from one year 

at the University of Chicago. Results from that study should measure conclusively the performance of 

this computer technique. We have developed required logistic capabilities to access consecutive 

mammography cases, radiology reports, and pathology reports, and are well underway to carry out that 

study, perhaps in the next year. (It was a substantial task to develop the logistics for this study given the 

need to fulfill IRB and HIPPA requirements and the need to handle large number of patient cases.) This 

work was presented at the ARRS meeting in 2004 [11] and the International Digital Mammography 

Workshop in 2004 [12]. A manuscript for a peer-reviewed publication is under preparation. 

5.      A new method for training artificial neural networks 

This particular work is beyond but related to SOW Task 3. We have continued investigating 

artificial neural networks. While not specifically stated in the SOW, artificial neural network is a key 



component of our computer technique for classifying breast calcifications as malignant or benign, and 

therefore, is related to SOW Task 3. We have developed a new method of training artificial neural 

networks that improves generalizability of artificial neural networks from training (i.e., to learn about 

cases at large rather than to learn about the specific cases in a training dataset) and also improves the 

performance of artificial neural networks. This method is known as training with "jitter". It introduces 

random noise into the training data, effectively making data points "jitter" in the abstract space of the 

image feature data, when training artificial neural networks. The added noise discourages the neural 

network from learning specifically the cases in the training dataset, and effectively enlarges the size of 

the training dataset substantially, both effects of which help the neural network to become more 

generalizable to cases at large. We have found that artificial neural networks trained with this method 

can achieve an improved Az value (area under the ROC curve) of 0.88 compared to an Az value of 0.80 

from an artificial neural network trained with the conventional method in a previous study [13]. This 

work was presented at the RSNA meeting in 2003 [14] and at the AAPM meeting and the CARS 

meeting in 2004 [15]. A proceeding paper describing part of this work is attached. 

KEY RESEARCH ACCOMPLISHMENTS 

• Determined that the combination of BI-RADS lesion descriptors provided by radiologists and image 

features extracted by a computer can improve the performance of computer classification of 

malignant and benign breast lesions in mammograms, but reader variability in providing the BI- 

RADS lesion descriptors can diminish that improvement. 

• Demonstrated that the method of choice for simple un-weighted linear combinations of diagnostic 

information derived from multiple sources such as multiple images of the same patient is not always a 

single method but will change from one method to another depending on the ROC curve parameters 

of the diagnostic information derived from each single source, and depending on the correlation 

strength in the decision variables of diagnostic information derived from each single source. 

• Demonstrated empirically that a quadratic averaging method we described previously for combining 

correlated diagnostic assessments, such as those made by a radiologist and made by a computer-aided 



diagnosis technique on the same patient, produces results asymptotically approach the performance of 

the ideal observer, in support of a theoretical claim of the same conclusion. 

• Demonstrated that our computer-aided diagnosis technique that classifies calcifications in 

mammograms as malignant or benign developed previously on digitized screen-film mammograms 

and required manual identification of individual calcifications can achieve virtually the same highly 

accurate and highly consistent performance on full-field digital mammograms. 

• Evaluated the computer-aided diagnosis technique on both lesions biopsied because of suspicion of 

malignancy and lesions not biopsied because radiologists considered them safe to follow. 

• Developed necessary logistics and infrastructure to conduct a large evaluation of the computer-aided 

diagnosis technique on consecutive diagnostic mammography studies from one year. 

• Developed a novel technique for training artificial neural networks by using "jitter" that can improve 

generalizability and performance of the artificial neural networks. 

REPORT ABLE OUTCOMES 

Manuscripts 

1. Jiang Y, Nishikawa RM, Schmidt RA, D'Orsi CJ, Vyborny CJ, Newstead GM. Use of BI-RADS 

lesion descriptors in computer-aided diagnosis of malignant and benign breast lesions. Proc 

SPIE 5372 199-202, 2004. 

2. Liu B, Metz CE, Jiang Y. An ROC comparison of four methods of combining information from 

multiple images of the same patient. Medical Physics 31:2552-2563, 2004. 

3. Paquerault S, Yarusso LM, Papaioannou J, Jiang Y, Nishikawa RM. Radial gradient-based 

segmentation of mammographic microcalcifications: observer evaluation and effect on CAD 

performance. Medical Physics 31:2648-2657, 2004. 

4. Jiang Y, Rana RS, Schmidt RA, Nishikawa RM, Liu B, Sennett CA, Chambliss J, Abe H. 

Computer classification of malignant and benign calcifications in full-field digital mammograms. 

In Pisano E, Ed., Digital Mammography 2004, (in press). 



5. Nishikawa RM, Jiang Y, Reiser I. What is the required pixel size for digital mammography? In 

Pisano E, Ed., Digital Mammography 2004, (in press). 

6. Zur RM, Jiang Y, Metz CE. Comparison of two methods of adding jitter to artificial neural 

network training. In Lemke HU, Vannier MW, Inamura K, Farman AG, Doi K, Reiber JHC Eds., 

CARS 2004 Computer Assisted Radiology and Surgery, Amsterdam: Elsevier, 886-889, 2004. 

Abstracts 

7. Liu B, Metz CE, Jiang Y. ROC comparison of three methods of analyzing information derived 

from multiple images of the same patient with application to computer-aided diagnosis (CAD). 

In: Radiological Society of North America scientific assembly and annual meeting program. Oak 

Brook, IL: Radiological Society of North America, 425-426, 2003. 

8. Rana R, Jiang Y, Schmidt RA, Liu B, Sennett C, Chambliss J, Abe H, Lunning N. Independent 

evaluation of computer classification of malignant and benign calcifications in full-filed digital 

mammograms. American Journal of Roentgenology 182 (supplement):30, 2004. 

9. Liu B, Jiang Y, Rana R. Effect of radiologists' variability on computer performance in 

classifying malignant and benign microcalcifications in mammograms. Medical Physics 

31:1795,2004. 

10. Paquerault S, Yarusso LM, Nishikawa RM, Papaioannou J, Edwards AV, Jiang Y. Observer 

evaluation and CAD performance of a radial gradient-based segmentation method for 

mammographic microcalcifications. In: Radiological Society of North America scientific 

assembly and annual meeting program. Oak Brook, IL: Radiological Society of North America, 

389, 2003. 

11. Zur RM, Jiang Y. Avoiding overfitting and increasing generalizability of artificial neural 

networks in CAD by training with jitter. In: Radiological Society of North America scientific 

assembly and annual meeting program. Oak Brook, IL: Radiological Society of North America, 

390, 2003. 

12. Zur R, Jiang Y. Variability in the outputs of Bayesian artificial neural networks. Medical 
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Non-Abstracted Presentations 

13. Jiang Y. Digital mammography and computer-aided diagnosis. Invited presentation at the Second 

Seoul International Symposium for Computer Aided Diagnosis, Seoul, Korea, 2004. 

14. Jiang Y. Computer-aided diagnosis of breast calcifications. Invited presentation at the Second 

Seoul International Symposium for Computer Aided Diagnosis, Seoul, Korea, 2004. 

CONCLUSIONS 

We have made significant progress toward completing all three SOW Tasks. All three Tasks 

now may be considered as complete. However, research addressed by the three SOW Tasks continues, 

particularly for Tasks 2 and 3. The continuing research is beyond the scope of the SOW of this grant 

and we believe it will lead to new insights and advances in the research questions it addresses. We plan 

to further pursue this line of research. We gratefully acknowledge the support of the US Army Breast 

Cancer Research Program, particularly in helping the PI establishing a career in breast cancer research. 
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Use of BI-RADS lesion descriptors in computer-aided diagnosis of 
malignant and benign breast lesions 

Yulei Jiang, Robert A. Schmidt, Robert M. Nishikawa, 
Carl J. D'Orsi*, Carl J. Vyborny, Gillian M. Newstead 

Department of Radiology, The University of Chicago, Chicago, IL 60637 

'Department of Radiology, Emory University, Atlanta, GA 30322 

ABSTRACT 

The purpose of this study was to determine whether combining an automated computer technique that classifies 
calcifications in mammograms as malignant or benign with radiologist-provided BI-RADS lesion description improves 
classification performance. Three expert mammography radiologists who were MQSA certified and familiar with BI- 
RADS retrospectively interpreted 125 cases of mammograms containing calcifications and provided BI-RADS lesion 
descriptions. A computer technique was applied to the mammograms to extract eight image features that describe the 
size, shape, and uniformity of individual as well as groups of calcifications. We compared the performance of artificial 
neural networks that estimated the likelihood of malignancy based on input from either the computer-extracted image 
features alone, the BI-RADS lesion descriptors alone, or the combination of both. The leave-one-out method was used. 
Combining the BI-RADS lesion description provided by a single radiologist and computer-extracted image features 
resulted in improved performance. However, using two radiologists' BI-RADS lesion descriptions such that one 
radiologist's data was used to train and another radiologist's data was used to test the neural network diminished this 
improvement in performance. These results suggest that variability in radiologists' BI-RADS lesion description is large 
enough to offset a potential gain in performance from combining it with an automated computer technique. 

Keywords: BI-RADS, computer-aided diagnosis, classification, breast calcifications, reader variability 

1.   INTRODUCTION 

Computer-aided diagnosis (CAD) is being developed to help radiologists improve their diagnostic performance in the 
interpretation of screening and diagnostic mammograms. Previous research demonstrates that computer-aided diagnosis 
holds the potential to help radiologists reduce the number of biopsies of benign lesions while maintaining or even 
increasing the correct diagnosis of malignant lesions [1-4]. Two different approaches have been taken in developing 
CAD techniques. The first is to rely on subjective description of breast lesions provided by radiologists in conjunction 
with a computer classifier to classify breast lesions [5, 6]. This approach is believed to help the radiologist by inducing 
the radiologist to observe the lesion and rate the lesion appearance in a systematic manor and by the use of a computer 
classifier that might be more apt than humans in analyzing more than a couple of lesion descriptors. The lesion 
description lexicon of the Breast Imaging Reporting and Data System (BI-RADS) has been used as a basis for this 
approach [7]. The second approach is to rely on the computer to extract image features that describe breast lesions in 
conjunction with a computer classifier to classify breast lesions [2, 4, 8]. This approach has the advantage that both 
image-feature extraction and classification decision-making are done in an objective way. Often, radiologists' 
subjective experience is used to guide the development of computer extraction of image features [8]. 

Previously, we have shown that by combining these two approaches, that is to use a computer classifier to analyze both 
BI-RADS lesion descriptors and computer-extracted image features, computer classification performance of malignant 
and benign breast lesions can be improved [9].   However, we cautioned that variability in radiologists' lesion 

Medical Imaging 2004: Image Perception, Observer Performance, and Technology Assessment, 1" 
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descriptions would counteract this apparent benefit from combining the two sources of information on lesion 
appearance. Studies have measured variability among radiologists in describing breast lesions in terms of the BI-RADS 
lexicon, and have found generally only moderate agreement [10, 11]. The purpose of this work was to investigate 
whether it is beneficial to combine computer-extracted image features and BI-RADS lesion descriptors provided by 
radiologists for computer classification of calcifications as malignant or benign. 

2.   MATERIALS AND METHODS 

2.1. Reader study 

Three expert radiologists specializing in mammography read 125 cases of mammograms containing calcifications. 
These radiologists were familiar with the BI-RADS lexicon of lesion descriptors. In 41 cases the calcifications were 
associated with cancers. These were confirmed by biopsy. Benign cases were confirmed either by biopsy or by follow- 
up mammogram study. The radiologists read original mammograms in standard and magnification views of both 
breasts. The calcifications in question were indicated on all films. The radiologists read the cases in random order with 
no additional information, and with no limit on reading time. 

For each case, each radiologist provided BI-RADS lesion descriptors for the calcifications, BI-RADS final assessment 
category for the calcifications, and estimated the likelihood that the calcifications were associated with malignancy on a 
100-point quasi-continuous scale. The BI-RADS lesion descriptors included descriptors for calcification distribution, 
calcification morphology, and calcification number. While calcification number is not a BI-RADS descriptor per se, it 
is a descriptor commonly used in computer analysis of radiologists-provided lesion descriptions [5, 6] and we used this 
descriptor [8] in this study as well. Calcification distribution consisted of 5 different descriptors; calcification 
morphology consisted of 14 different descriptors; and calcification number consisted of 4 different descriptors: less than 
5, 5-10, 10-30, or greater than 30 [7]. Because it was often difficult for the radiologists to decide on a single 
calcification morphology descriptor for the calcifications, they selected up to two calcification morphology descriptors 
for each case. When these descriptors were later analyzed with computer classifiers, we needed to input the same 
number of lesion descriptors to the computer classifier. For the cases that a radiologist provided a single lesion 
morphology descriptor we duplicated this descriptor and made two lesion morphology descriptors that were identical. 
Therefore, all cases had two calcification morphology descriptors; in some cases the two descriptors were identical. 

2.2. Computer classification of calcifications as malignant or benign 

We have developed a computer technique that classifies breast calcifications as malignant or benign based on computer- 
extracted image features from mammograms [8]. We have shown previously that this computer technique can be as 
accurate as, or more accurate than, radiologists in classifying calcifications in mammograms, and more importantly, this 
computer technique can help radiologists improve diagnostic performance in making biopsy recommendations [1, 3, 8]. 
This computer technique has been described in detail elsewhere [8]. Briefly, the computer extracts eight image features 
from digital mammograms. These image features describe the size and shape of a calcification cluster, the average and 
variation in size (including contrast) of individual calcifications, and the degree of shape-irregularity of the individual 
calcifications. The computer then uses an artificial neural network (ANN) to merge the image features into a single 
output, and subsequently converts this output to an estimate of the likelihood of malignancy. 

2.3. Data analysis 

Several different analyses of the data were carried out. The radiologists' BI-RADS final assessments and their estimate 
of the likelihood of malignancy on the quasi-continuous scale were analyzed with receiver operating characteristic 
(ROC) analysis directly. Artificial neural networks were developed to analyze radiologists' BI-RADS lesion descriptors 
and computer-extracted image features in a variety of ways. First, ANNs were developed to analyze radiologists' BI- 
RADS lesion descriptors alone.  Second, an ANN was developed to analyze computer-extracted image features alone. 
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Third, ANNs were developed to analyze radiologists' BI-RADS lesion descriptors and computer-extracted image 
features in combination. In these analyses, a single radiologist's BI-RADS data were used for both ANN training and 
testing. The leave-one-out method was used to avoid training bias. In addition to these, a fourth analysis was carried 
out with artificial neural networks in which an ANN was trained with one radiologist's BI-RADS data and tested with a 
different radiologist's BI-RADS data. In this analysis, the ANNs analyzed radiologists' BI-RADS lesion descriptors and 
computer-extracted image features in combination. The leave-one-out method was also used in this analysis to avoid 
training bias. 

3.   RESULTS 

The average area under the ROC curve, or Az value, for BI-RADS final assessments made by the three radiologists was 
0.70. The average Az value for the likelihood of malignancy on a quasi-continuous scale estimated by the three 
radiologists was 0.75. The standard deviations in both Az values were 0.05 (p = 0.049). 

When an artificial neural network was used to analyze BI-RADS lesion descriptors provided by the radiologists, and the 
same radiologist's data were used for both training and testing, using the leave-one-out method, the average Az value 
was 0.71 and the standard deviation was 0.09. When another artificial neural network was used to analyze computer- 
extracted image features alone, the Az value was 0.77. When yet another artificial neural network was used to analyze 
BI-RADS lesion descriptors and computer-extracted image features in combination, still using the same radiologist's 
data for both training and testing with the leave-one-out method, the average Az value improved to 0.81 and the 
standard deviation was 0.04. 

When one radiologist's data were used for training while a different radiologist's data were used for testing an artificial 
neural network, the average Az values reduced to 0.77 and the standard deviation was 0.05. In this analysis, artificial 
neural networks were used to analyze BI-RADS data and computer-extracted image features in combination. The 
leave-one-out method was used in this analysis. 

4.   DISCUSSION AND SUMMARY 

These results indicate that the combination of BI-RADS lesion descriptions provided by radiologists and computer- 
extracted image features can improve the performance of computer classification of calcifications as malignant or 
benign. However, variability in radiologists' use of BI-RADS descriptions can diminish that improvement. This 
finding concerning radiologists' variability in the use of BI-RADS is consistent with other studies of BI-RADS [10, 11], 
and it raises doubts for the usefulness of BI-RADS lesion descriptors in conjunction with computer-extracted image 
features for classification of breast lesions as malignant or benign. Such an approach can be expected to work well only 
if the radiologist uses the BI-RADS descriptors consistently, but it is not clear whether radiologists in general are able to 
do so at this time. It may be more realistic to expect a radiologist to use the BI-RADS descriptors consistently over 
time, and one could take advantage of this by developing a computer classifier that is trained on BI-RADS data from, 
and to be used by, a single radiologist. However, the practical usefulness of such a computer technique would be rather 
limited. 
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Variance of diagnostic information contained in an image degrades diagnostic accuracy. Acquiring 
multiple images of the same patient (e.g., mediolateral oblique and craniocaudal view mammo- 
grams) can, in principle, help reduce this degradation. We demonstrate how this can be accom- 
plished in the context of computer-aided diagnosis (CAD). Assuming that computer outputs ob- 
tained from multiple images of the same patient can be transformed monotonically to the same pair 
of truth-conditional normal distributions and, for simplicity, ignoring correlation among images, we 
investigate theoretically four methods of combining the computer outputs: taking the average, the 
median, the maximum, or the minimum. We found, as one would expect, that both the average and 
the median always produce an improved area under the receiver operating characteristic (ROC) 
curve (AUC) compared to the single-view images, while the average always produces better per- 
formance than the median. However, the maximum and minimum also can produce improved 
AUCs in some situations, and under certain conditions can outperform the average. Surprisingly, we 
found that the maximum and minimum of normally-distributed decision variables produce nearly 
binormal ROC curves. These results can be used as a guide in attempting to increase the efficacy of 
CAD when multiple images are available from the same patient. © 2004 American Association of 
Physicists in Medicine.   [DOI: 10.1118/1.1776674] 

Key words: ROC analysis, binormal model, computer-aided diagnosis, multiple medical images, 
combination of multiple assessments 

I. INTRODUCTION 

Variance in diagnostic information degrades the accuracy of 
diagnosis by broadening the statistical distributions of diag- 
nostic information and thus blurring the distinction between 
diagnostic information from healthy and diseased patients.1 

Metz and Shen investigated the degradation of diagnostic 
accuracy introduced by variance in human interpretation of 
medical images and calculated the gain in diagnostic accu- 
racy that is available from averaging repeated readings of the 
same images by accuracy-equivalent readers.2 Swensson 
et al. showed that the median can be used to achieve a simi- 
lar gain in diagnostic accuracy.3 

Acquiring multiple images can reduce the degradation of 
diagnostic accuracy due to the variance of diagnostic image 
information and is widely believed to help improve the ac- 
curacy of diagnosis. It is standard practice in mammography 
to acquire two images, the mediolateral oblique (MLO) and 
craniocaudal (CC) views. This presents a dilemma for 
computer-aided diagnosis (CAD), however. On one hand, 
CAD can take a patient-based approach: to treat all images of 
a patient as a unit and analyze these images as a whole. The 
easiest way to deal with features from different images (e.g., 
lesion area in an MLO view mammogram and the same fea- 
ture in a CC view mammogram) is to treat them as if they 
were different features. The disadvantage of this approach is 
that it increases the dimensionality of the analysis, which 
equals the number of images per patient times the number of 
image features extracted from each image. Increased dimen- 

sionality makes it more difficult to obtain a reliable computer 
classifier. On the other hand, CAD can take an image-based 
approach, treating each image as a unit and analyzing mul- 
tiple images of the same patient independently. However, the 
results of this analysis of multiple images of a patient must 
be combined into a single diagnostic variable, and the opti- 
mal method for doing so is unknown. 

Researchers have employed ad hoc methods to combine 
results of computer analyses of multiple images of the same 
patient. Jiang et al. used the maximum output, which corre- 
sponds to the highest likelihood of malignancy in classifying 
malignant and benign microcalcifications in mammograms.4 

Chan et al. compared the use of average and maximum in 
calculating the likelihood of malignancy of microcalcifica- 
tions and found the method of average to be slightly better.5 

Huo et al. compared the average, maximum and minimum in 
classifying malignant and benign masses and found average 
to be the best.6 However, to our knowledge, no one has re- 
ported a general approach to the question of which method 
produces the best result in which situations. 

We have studied theoretically the diagnostic performance 
obtained from average, median, maximum and minimum val- 
ues within the framework of ROC analysis. For clarity, we 
use italics in this paper to indicate a particular method of 
combining multiple diagnostic assessments: the average, the 
median, the maximum, and the minimum. We also refer to 
the use of a single output per patient as the single-output 
method. To simplify the analysis, we assumed in this work 
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that each classifier output (e.g., from the MLO or CC view) 
produces the same ROC curve when employed alone. While 
this work was motivated by CAD of multiple images from 
the same patient, the question applies in principle to any 
decision task requiring the combination of multiple assess- 
ments for each case. Thus, to be general, we will use the 
term "per case" instead of "per patient" hereafter in this 
article. In Sec. II A, we review the binormal model for ROC 
analysis, upon which our theory is based. In Sec. IIB, we 
derive the theoretical relationship between true positive frac- 
tion (TPF) and false positive fraction (FPF) for each method. 
In Sec. Ill, we calculate areas under ROC curves (AUCs) and 
identify the situations in which each method produces the 
best result. We then provide in Sec. IV an intuitive explana- 
tion for our results and discuss limitations and potential ap- 
plications of the theory, followed by conclusions in Sec. V. 

II. THEORY 

A. The binormal model 

ROC analysis is widely recognized as the most effective 
and meaningful way to quantify diagnostic performance of 
an imaging systems.1,7 An ROC curve completely describes 
all available tradeoffs between sensitivity and specificity. 
Sensitivity or TPF is defined as the probability that an actu- 
ally positive case will be diagnosed as positive. Specificity is 
defined as the probability that an actually negative case will 
be diagnosed as negative. Instead of specificity, it is often 
more convenient to use FPF, which is defined as the prob- 
ability that an actually negative case will be diagnosed as 
positive and equals 1-specificity. Although an entire ROC 
curve is required to describe the performance of an imaging 
system completely, the area under the ROC curve (AUC) is a 
useful summary index that can be interpreted as the average 
value of sensitivity over all possible values of specificity or, 
equivalently, as the average value of specificity over all pos- 
sible values of sensitivity. 

In ROC analysis, the binormal model has been used suc- 
cessfully to fit data obtained in a wide variety of practical 
situations.8'9 This model assumes that the observed decision 
variable can be transformed to a pair of normal (i.e., Gauss- 
ian) distributions by an unknown monotonic transformation 
of the decision variable, whence: 

1 
/(JC | negative) =   ,— exp 

2 77 

for actually negative cases, and 

f(x | positive) =   ,— exp 
J2TT 

{bx-a)' 

0) 

(2) 

for actually positive cases, in which x is a latent decision 
variable. In this article, we use the notation N(/x,(r) to de- 
scribe a normal distribution with mean //. and standard de- 
viation cr. With this notation, the binormal model can be 
expressed as N(0,\) for actually negative cases and 
N(alb,\lb) for actually positive cases. 

Given the binormal model, it is straightforward to calcu- 
late TPF, FPF, and AUC. With a critical value xc of the latent 
decision variable x, a case is diagnosed as positive if and 
only if x>xc. Therefore, TPF(xc) is given by 

f«   b         f    (bx-a)2 

TPF(xc) =      -}=exp|  dx = <b(a-bxc) 
. /2ir 

and FPF(xc) is given by 

1 
FPF( 

Jx, 
exp \-— \dx = <b{- 

2TT      {     L) 

(3) 

(4) 

in which 4>(z) represents the cumulative standard normal 
distribution function. As xc varies from — oo to °°, T?¥(xc) 
and FPF(;tc) sweep out the ROC curve, which can be repre- 
sented in a unit square by plotting TPF as a function of FPF. 
The area under this binormal ROC curve, denoted by Az with 
the subscript z indicating use of the binormal model, can be 
expressed as (see Appendix A for derivation)2,10 

A=<S> (5) 

Alternatively, the same ROC curve can be plotted on 
"normal-deviate axes," ZjpF as a function of ZppF, where 
TPF=$(ZTPF) and WF=$(ZFPF)- Applying the inverse 
cumulative standard normal distribution function to both 
sides of Eqs. (3) and (4), we have 

ZTPF=a — bxc (6) 

and 

ZFPF
=

 
— xc, (7) 

whence 

ZjpF=oi + AZFpF. (8) 

Thus, a binormal ROC curve plots on normal-deviate axes as 
a straight line with slope b and "y-intercept" a.1,7 Because 
any pair of distributions that can be transformed monotoni- 
cally to the binormal distributions N(0,l) and N(a/b,l/b) 
will have the same ROC curve,9 the extent to which the ROC 
curve obtained from any arbitrary pair of decision-variable 
distributions is approximated well by a straight line on 
normal-deviate axes indicates how closely the underlying 
distributions can be transformed monotonically to a pair of 
normal distributions. 

B. Combining information derived from multiple 
images of the same patient 

Acquiring multiple images of the same patient can in- 
crease diagnostic accuracy. In many CAD approaches, mul- 
tiple images of the same patient produce multiple diagnostic 
outputs. To simplify the analysis, we assume that each indi- 
vidual output yields the same ROC curve. We now analyti- 
cally derive the ROC curves produced by several methods— 
the average, the median, the maximum, and the minimum— 
for combining these multiple outputs into one decision 
variable. To the extent that each output's ROC curve plots as 
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a straight line on normal deviate axes, one can always, in 
principle, transform the individual outputs monotonically to 
binormal distributions. Therefore, we can, without loss of 
generality, start from the same binormal distributions for 
each individual outputs: 7V(0,1) and N(alb,\lb), whose 
single-output Az value is <b(a/\J\ + b2). We further assume 
that the monotonic transformation which connects an ob- 
served distribution of the data to the binormal model is 
known. In practice, this transformation can be estimated by 
use of the LABROC4 software developed by Metz etal.u 

Moreover, for simplicity, we assume that these multiple out- 
puts have no correlation. Although correlations are present in 
most real-world applications, they substantially complicate 
the present analysis, and we will defer the consideration of 
them to future work. 

1. Average 

The average of n normally distributed, independent ran- 
dom variables with mean /j. and standard deviation a is also 
normally distributed with the same mean but with a standard 
deviation crl^n.n Therefore, the result of averaging also fol- 
lows a pair of normal distributions: N(Q,\l^fn) for actually 
negative cases and N(a/b,l/(by[n)) for actually positive 
cases. These two normal distributions can be easily trans- 
formed to the binormal model: ^(0,1) and N(\fna/b,l/b). 
Thus, 

A7 = 3>|   ,   •"%   |=$|-^=|. (9) 

P(xmm*ix\mgative) = [<i>(x)]". (13) 

Vl+*avg VTTP 
This ROC area is greater than the single-output Az, because 
the average reduces the standard deviation of the normal 
distributions, thereby reducing the overlap between the 
actually-negative and actually-positive distributions. On 
normal-deviate axes, this ROC curve is given by 

ZTPF= \fna + &ZppF, (10) 

which has the same slope as the single-output ROC curve but 
a greater y-intercept. As the number of multiple outputs, n, 
increases, both the y-intercept and the Az value increase. 

2. Maximum 

Consider the maximum of n normal random variables 
X; (('= l,...,n) drawn independently from N(fjL,&): 

xmm=ma\{x1,...,xi,...,xn}. (11) 

The probability that Jcmax^A:, for an arbitrary x, is given by 

P(xm^x) = P(xi^x,...,   and x^x,...,   and xn^x) 

n 

=n P(X^X)=[P(X^X)T 
1=1 

* 
x—ix 

a 
(12) 

With the binormal model, fi=0 and tr=l for actually nega- 
tive cases, so 

Similarly, fi = a/b and a=l/b for actually positive cases, 
whence: 

P {xmm^x\ positive) = <S> 
x — alb 

lib 
= [®(bx-a)]". 

(14) 
Comparing xmax to a critical value, xc, to calculate TPF and 
FPF, we obtain 

TPF(xc) = P(xmax>^c| positive) 

= l-P(xm^xc\pos\tive) = l-[<t>(bxc-a)]" 

(15) 
and 

FPF(J:C) = P(xmm>xc\ negative) 

= l-P(xmax«x>egative) = l-[4>(xc)]".    (16) 
From Eq. (16), 

.^^-'(Vl-FPF), (17) 

so from Eq. (15), we have 

TPF=1 -[$(*$-'('Vl -FPF)-o)]" (18) 

and 

ZmF=*-1{l-[*(A<D-,(V*(-ZFPF))-fl)]"}.      (19) 

From Eq. (18) we can calculate the AUC of the maximum 
by numerically integrating the expression /oTPF(FPF) 
rf(FPF), whereas from Eq. (19) we can evaluate numerically 
the linearity of the ROC curve on normal-deviate axes: Zxpp 
versus ZppF. 

3. Minimum 

The functional relationship between ZjpF and ZppF for the 
minimum can be derived by following a procedure similar to 
that used for the maximum. Consider the minimum of n nor- 
mally distributed, independent random variables xs (i 
= l,...,w) drawn from N(/X,(T): 

xmin=mm{x1,...,xi,...,xn}. (20) 

The probability for xmin>x, of any arbitrary x, is given by 

P(xmin>x) = P(xi>x,...,    and xt>x,...,    and xn>x) 

= 11 P(xi>x) = [P(xl>x)]" 
i=i 

$ 
x — ft 

(21) 

Therefore, for a critical value xc of the decision variable, 
TPF and FPF of the minimum are given by 

TPF(xc) = P(xmin>xc\positive) = [<£>(a-bxc)]"        (22) 

and 

FPFCxJ = />Cxmto>*c|negative) = [<t>(-*c)]''. (23) 
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FIG. 1. Normal deviate ROC curves derived from single-output binorma! distribution pair #(0,1) and N(a/b,\/b): (i) ROC curves of the maximum and the 
average for n= 1, 2 and 3; (ii) ROC curves of the minimum and the average for n= 1, 2 and 3; (iii) ROC curves of the median and the average for «= 1, 3 
and 5. For n = 1, the ROC curves of the maximum, the minimum, the average and median are the same, which is the single-output ROC curve, so we did not 
label n=l in the figure. 

From Eq. (23), we have 

Plug Eq. (24) into Eq. (22), we have 

TPF=[$(a + Ä*-1('VFPF))]'!, 

so 

zTPF=<i>-1{[*(«+^-1(V*(z^)))]'!}. 

(24) 

(25) 

(26) 

Thus, we can calculate the AUC of the minimum numerically 
from Eq. (25) and evaluate numerically the linearity of the 
ROC curve on normal-deviate axes from Eq. (26). 

4. Median 

The median of a set of variables is found by arranging 
their values in rank order and then selecting the one in the 
middle. If the number of variables is even, then the median is 
defined as the average of the two numbers in the middle. If 
there are just two variables, then the median is simply the 
average. We now derive the ROC curve obtained from the 
median of an odd number of outputs: n = 2m +1, where m is 
a natural number. 

Given a critical value xc of the decision variable, the 
probability that a single output of an actually positive case 
yields a positive diagnosis is given by 

/jp=P(jc>^c|positive) = $(a - bxc), (27) 

whereas the probability that a single output of an actually 
negative case yields a positive diagnosis is given by 

p„=/3(^>xc|negative) = 4>(-xc). (28) 

With 1m +1 independent outputs, the median of these out- 
puts will yield a positive diagnosis if and only if at least m 
+ 1 of these outputs indicate a positive diagnosis. Therefore, 
TPF for the median can be written as 

n=2m+l 

TPF(xc)=    2 P*(l- PPr 
n=2m+i 

■■ 2   U[*(fl-fcO]* 
it = m+l    \KI 

X[\-<t>(a-bxc)]"~k, (29) 

where („)=n\/k\(n — k)\. Similarly, FPF for the median can 
be written as 

n = 2m+l   I    i 

FPF(*C)=    2        J [*(-**)]*[ l-*(-*c)]"-*. 
k=m+\    \KI 

(30) 

The quantities ZTPF(xc) and ZppF(;tc) can be obtained by 
applying the inverse cumulative standard normal distribution 
function to both sides of Eqs. (29) and (30). Note that unlike 
the average, maximum, and minimum, the functional rela- 
tionships between TPF and FPF and between Z-jpp and ZppF 

for the median must be described implicitly through the criti- 
cal value xc. However, the AUC of the median can still be 
calculated numerically by integrating /"oo_TPF(xc) 
X[dFPF(xc)/dxc]dxc, and the linearity of the ROC curve 
on normal-deviate axes that is obtained from the median can 
be investigated numerically by calculating Z-ppp and ZppF 

pairs from a variety of xc values. 

III. RESULTS 

A. Linearity of ROC curves on normal-deviate axes 

The binormal ROC curve given by 7V(0,1) and 
N(alb,\lb) plots as a straight line on normal-deviate axes 
with slope b and y-intercept a. According to Eq. (10), the 
average produces strictly binormal results, so its ROC curve 
also plots as a straight line on normal-deviate axes. Accord- 
ing to Eqs. (19), (26), (29), and (30), the maximum, mini- 
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TABLE I. Eighth order polynomial fit of normal-deviate ROC curves of the maximum, the minimum, the average, 
and the median, derived from single-output binormal distribution pair N(0,l) and N(alb,\lb) with a= 1 and 
b- 1. The coefficients of determination (Ä2) are essentially equal to 1 in all fits. P; denotes the fitted coefficient 
of the ith order term. 

N, number of 
Method multiple outputs Po Pi Pi Pi PA Pi Pi Pi Ps 

Maximum 2 1.2518 1.0509 -0.0079 -0.0002 0.0005 -0.0001 0.0000 0.0000 0.0000 

3 1.4147 1.0902 -0.0123 -0.0007 0.0008 -0.0001 0.0000 0.0000 0.0000 

4 1.5371 1.1225 -0.0151 -0.0013 0.0011 -0.0002 0.0000 0.0000 0.0000 

5 1.6359 1.1501 -0.0171 -0.0019 0.0013 -0.0002 0.0000 0.0000 0.0000 

Minimum 2 1.1819 0.9389 -0.0018 0.0026 0.0004 -0.0001 0.0000 0.0000 0.0000 

3 1.2828 0.9008 0.0002 0.0038 0.0004 -0.0002 0.0000 0.0000 0.0000 

4 1.3512 0.8739 0.0025 0.0045 0.0003 -0.0002 0.0000 0.0000 0.0000 

5 1.4023 0.8535 0.0046 0.0049 0.0002 -0.0002 0.0000 0.0000 0.0000 

Average 2 1.4142 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

3 1.7321 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

4 2.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

5 2.2361 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Median 3 1.4945 0.9893 -0.0065 0.0008 0.0002 0.0000 0.0000 0.0000 0.0000 

5 1.8658 0.9857 -0.0070 0.0006 0.0001 0.0000 0.0000 0.0000 0.0000 

7 2.1755 0.9840 -0.0067 0.0005 0.0001 0.0000 0.0000 0.0000 0.0000 

9 2.4465 0.9830 -0.0064 0.0004 0.0001 0.0000 0.0000 0.0000 0.0000 

mum, and median do not produce strictly binormal results; 
however, they produce nearly linear ROC curves on normal- 
deviate axes, as we show below. 

Figure 1 compares the ROC curves produced by the maxi- 
mum, the minimum and the median to that produced by the 
average on normal-deviate axes for a = \ and b=\. The 
range of ZppF shown in this figure, -3.0 to 3.0, corresponds 
to FPF values from 0.001 to 0.999. The ROC curves ob- 
tained from the average of n independent decision variables 
are parallel straight lines with a y-intercept that increases as n 
increases. Perhaps surprisingly, however, the ROC curves of 
the maximum, the minimum, and the median also are nearly 
linear on normal-deviate axes. The slope of the ROC curve 
from the maximum increases slightly as n increases and is 
greater than the slope of the corresponding ROC curve for 
the average, whereas the opposite is true for the minimum, 
which yields a slope that decreases slightly as n increases 
and is smaller than the slope of the corresponding ROC 
curve for the average. The slopes of the median are similar 
to those of the average, an observation that can be ascribed 
to the fact that both median and average are location mea- 
sures. 

We performed linear regression analysis on these ROC 
curves. The coefficient of determination13 was found to be 
R2—0.9999 in all such analyses. The nonlinear coefficients 
(Table I) are at least several orders of magnitude smaller than 
the linear coefficient, indicating quantitatively that the ROC 
curves are virtually straight lines. The linearity of the maxi- 
mum and minimum ROC curves decreases slightly as n in- 
creases, whereas the linearity of the median is nearly inde- 
pendent of n (Fig. 2). 

B. Comparison of AUCs 

Figure 3 compares the single-output ROC curve given by 
the binormal model iV(0,l) and N{alb,\lb) with a = \ and 
b— 1, and corresponding ROC curves obtained from the av- 
erage, the median, the maximum, and the minimum for n 
= 2 and n = 3. The A. value of the single-output ROC curve 
is 0.760, given by Eq. (5). The Az values of the average 
ROC curves are 0.841 for n = 2 and 0.890 for n = 3, from Eq. 
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FIG. 2. The quadratic coefficient (P2 in Table I) in 8th order polynomial fit 
of the normal deviate ROC curves of the maximum, the minimum and the 
median of n outputs. 
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Li. u. 
Q. 
I- 

0.0 02 0.4 0.6 0.8 

FPF 
a=l,b=l,n = 2 

(i) 

FIG. 3. ROC curves of the average, the median, the maximum and the minimum plotted on probability axes for n = 2 (i) and 3 (ii), derived from the 
single-output given by the binormal distribution pair N (0,1) and N (alb,\lb), with a = \ and b=\. The negative diagonal of the unit square is shown as a 
solid line in order to demonstrate the skewness of the maximum and the minimum. 

(9). The AUCs for the maximum, minimum, and median ROC 
curves were calculated from Eqs. (18), (25), (29), and (30) 
by numerical integration: AUC=/ÖTPF(FPF) rf(FPF). The 
AUC for the median ROC curve is 0.855 for n = 3. The AUC 
values for the maximum and minimum ROC curves are the 
same: 0.805 for n = 2 and 0.829 for n = 3; however, the 
maximum ROC curve is slightly higher at high sensitivities, 
whereas the minimum ROC curve is slightly higher at low 
sensitivities. The pair of ROC curves obtained from the 
maximum and the minimum are skewed equally in opposite 
directions around the negative diagonal of the unit square 
because, for b=\, the two distributions of the binormal 
model are symmetric, whereas the maximum and the mini- 
mum are equivalent under a reflection of the decision- 
variable axis. 

Figure 4 compares the AUCs of the single-output ROC 
curves and of the ROC curves from the average, the median, 
the maximum, and the minimum, with a—I, n = 2 and with 
a = 1, n = 3 for various values of b, which represents the 
relative widths of the two truth-conditional normal distribu- 
tions for a single output. As one would expect, the Az value 
of the average is greater than that of the single-output ROC 
curve, because the average does not change the difference 
between the means of the distributions of negative and posi- 
tive cases but narrows both distributions equally, thereby re- 
ducing the overlap between negative and positive distribu- 
tions and hence increasing the Az value. The median, a 
location measure like the average, also always improves the 
AUC, but its performance is never as good as the average. 
Therefore, we will not consider median further in this article. 

1.0 -*s" 1 1 1 1  

«. .••SVV,0 • 

.  maximum 
 average 
 median 

" single-output 

■             i "         i  

FIG. 4. Areas under the ROC curves of the single-output, the average, the median, the maximum and the minimum for n outputs that arise from the 
single-output binormal distribution pair /V(0,1) and N(alb,\lb) with a —I. Here b is shown on the horizontal axis; n = 2 in (i) and n = 3 in (ii). 
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FIG. 5. Curves showing combinations of parameters a and b such that two methods among the average, the maximum, the minimum and the single-output 
produce the same AUC for n—2. These curves partition the (a,b) space into three labeled regions for each method according to their performance levels. See 
text for definition of the labeling of the curves and regions of (a,b) space. 

In contrast, the maximum and the minimum improve AUC in 
some situations, and outperform the average under certain 
conditions. However, the maximum and the minimum can 
also produce AUC values smaller than that of the single- 
output. Any intersection between two curves in Fig. 4 indi- 
cates that the two corresponding methods produce the same 
AUC result. The curves for the average and median do not 
intersect that for the single-output because these methods 
always produce better results. All other curves intersect each 
other. 

Figure 5 compares the relative performance of the aver- 
age, the maximum, and the minimum in terms of the AUCs 
that these methods produce in the plane of a and b, which are 
the binormal model parameters of the single-output ROC 
curve. In this figure, the average and the minimum produce 
the same AUC along curve 1; the average and the maximum 
produce the same AUC along curve 2; the maximum and the 
single-output produce the same AUC along curve 3; and the 
minimum and single-output produce the same AUC along 
curve 4. The maximum and the minimum produce the same 
AUC along the straight line b = 1, which is not shown in this 
plot. These curves partition the (a,b) space into three la- 
beled regions for each method, where the region labeled 
"best improvement" indicates that particular method pro- 
duces the best AUC among the methods of the average, the 
maximum and the minimum; the region labeled with "im- 
provement" indicates better AUC than that of the single- 
output but not the best AUC; and the region labeled "detri- 
ment" indicates lower AUC than that of the single-output. 
Figure 5(i) identifies combinations of a and b such that the 
average produces the best AUC, and combinations of a and b 
such that the average produces an improved, but not the best, 
AUC. Similarly, Figs. 5(ii), and 5(iii) identify such combina- 
tions of a and b for the maximum and the minimum, and 
additionally, identify combinations of a and b such that these 
methods produce detrimental results, i.e., AUC values 
smaller than that of the single-output. 

Figure 6 shows how the regions of best performance of 

each method change with n, the number of multiple outputs 
for each case. As n increases, the region in which the aver- 
age (region I) produces the best performance becomes larger, 
while the regions in which the maximum (region II) and the 
minimum (region III) produce the best performance become 
smaller. 

IV. DISCUSSION 

A. An intuitive explanation for improved ROC curves 

In Sec. II we derived analytically the functional relation- 
ship between TPF and FPF for the average, maximum, and 
minimum methods. AUC calculations show that although the 
average always improves performance, the maximum or the 

region II 

o.o >— 
o.o 

_i_ 
0.5 1.0 1.5 2.0 

a 

2.5 3.0 

FIG. 6. The best performance regions of the average, the maximum and the 
minimum versus n, the number of multiple outputs for each case. The defi- 
nitions of curves 1 and 2 are the same as in Fig. 5. Region II and region III 
are the regions below curve 2 and above curve 1, respectively. Region I is 
the region between curve 1 and curve 2. 
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minimum can perform even better under certain conditions. 
In this section, we provide an intuitive explanation for these 
results. 

The maximum of n normally distributed, independent ran- 
dom variables, xt (< = 1,2,...,n), drawn from N{fi,cr) satisfies 
Eq. (12); therefore, the probability density function of xmax 

=x is 

/max\-*max    X) 
d[P(xm^x)] 

dx 

$ 
x — fl 

a 

<t> 

dx 

x — fl 

a 

n-\ 

f(x\fi,a), (31) 

where f(x\fi,a) denotes the probability density of N(fi,cr). 
Similarly, According to Eq. (21), the probability of Jcmi„=SA: is 

P(xmin^x)=\- *   -■ 

"A 
(T 

(32) 

Therefore, the probability density of xmin is 

d[P(xmin^x)] 
J min\-*min    ■*/ dx 

= n *   - 
x — fl «-1 

f{x\fi,<r). (33) 

From Eqs. (31) to (33), we can calculate the mean and 
standard deviation of *max and xmin. Appendix B derives 
these for the special case of n = 2: the mean and standard 
deviation of xmix and xmin are given in Eqs. (B5)-(B8). One 
can see that the standard deviations of xmm and xmia become 
smaller, the mean of the xmm becomes greater, and the mean 
of xmin becomes smaller than the corresponding parameters 
of the original single-output distributions. It is straightfor- 
ward to calculate the mean and standard deviation of the 
average; for n = 2 in particular 

•*avg    A1 

and 

cr 
SD,   =-=. 

(34) 

(35) 

Clearly, narrowing the distribution width and/or increas- 
ing the separation between the two distribution means will 
improve the ROC curves. All three methods narrow the dis- 
tribution width: the average reduces cr to o7\/2 = 0.707cr, 
whereas the maximum and minimum reduce a to 
Vl -l/7rcr=0.826cr. These three methods have different ef- 
fects on the means of the distributions, however. The aver- 
age does not change the means of the distributions, whereas 
the maximum moves the means of the distributions to the 
right and the minimum moves the means of the distributions 
to the left, with the amount of the movement proportional to 

standard deviation of the original distributions. Therefore, 
the average always improves the ROC curve, whereas the 
effects of the maximum and minimum will depend on the 
relative and sometimes competing effects of distribution 
width and separation. 

For a single-output binormal distribution pair JV(0,1) and 
N{alb,\lb), the difference between the means for positive 
cases and negative cases is alb — {b—\)/(bVTT) for the 
maximum and a/b + (b— \)l(b4^) for the minimum. These 
two quantities represent a widening of the separation be- 
tween the means of the two distributions when b< 1 for the 
maximum and when b>\ for the minimum. Therefore, the 
maximum for b < 1 and the minimum for b > 1 will improve 
the ROC curve; they can even outperform the average be- 
cause they reduce distribution width and widen the separa- 
tion between their means at the same time. On the other 
hand, the minimum for b < 1 and the maximum for b > 1 can 
lower the ROC curve when their effects on reducing the 
separation between the means of the distributions surpass 
their effect on narrowing the distribution widths. 

Figure 7 shows three sets of ROC curves corresponding to 
the binormal distribution pairs (a=l, b=l), (a=\, b = 2), 
and (a= 1, £> = 0.5), along with probability-density pairs ob- 
tained from the average, the maximum, and the minimum. 
One can see, at least qualitatively, that the average always 
reduces the overlap between the two distributions, whereas 
the maximum and the minimum have varied effects on the 
overlap. For (a = 1, b= 1), the average produces the smallest 
overlap, whereas the maximum and minimum produce 
smaller and almost equal overlaps, indicating best ROC 
curve from the average and improved ROC curves from the 
maximum and minimum. For (a=l, b = 2), however, the 
minimum produces the smallest overlap, indicating that the 
best ROC curve is obtained from the minimum, whereas for 
(a = 1, 6 = 0.5) the maximum produces the smallest overlap, 
indicating the best ROC curve from the maximum. 

B. Gaussian approximation to probability densities of 
maximum and minimum 

The observation that ROC curves produced by the maxi- 
mum and minimum methods plot as nearly straight lines on 
normal-deviate axes (Fig. 1) implies that the distributions of 
the maximum and the minimum can be transformed mono- 
tonically to distributions that are very close to normal. In this 
section we use Gaussian functions to approximate the prob- 
ability density functions given by Eqs. (31) and (33), which 
are not exactly Gaussian, and calculate the AUCs of the 
maximum and the minimum for n = 2. According to Eqs. 
(B5)-(B8), we approximate the probability densities of the 
maximum by two Gaussian distributions: N( l/Vw, VI — 1/TT) 

and N((al b) + (\lb JTT) ,(\lb) yj\ — Vtr), and we approxi- 
mate the probability densities of the minimum by N(—1/ 
Vir,Vl -l/tr) and N((alb)-(\lb^),(\lb)j\-\lit). For 
the maximum and the minimum, the ratios of standard devia- 
tions of the actually-negative distribution to the actually- 
positive distribution are still b, and the differences between 
the  means  of the  actually-negative distribution and the 
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FIG. 7. Single-output binormal distri- 
bution pair W(0,1) and N'albMb) for 
a= 1, fc= 1, for a= 1, fc = 2 and for a 
= 1, fe = 0.5, together with the prob- 
ability densities obtained from the av- 
erage, the maximum and the minimum 
for n = 2. The corresponding ROC 
curves are also shown. 
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actually-positive distribution expressed in units of the stan- 
dard deviation of the actually-positive distribution are 
(yfrra-b+l)!^-1 and (4Tra~\-b-\)I^TT-\, respec- 
tively. Therefore2 

AUCmax=$| 

•fna-b+\\ 

\JTT— 1 /     \lTTa — b + 1 

Jl+b1   I ~    W(vr-l)(l+i2) 
(36) 

and 

AUCmin=<I> 

/ ypira + b-l\ 

Vi7-1 

\~llTP   I 
= $ \pira + b — 1 

yj(77-l)(l+b2 

(37) 

Figure 8 shows the relationship between AUCs and the 
parameter b prescribed by Eqs. (5), (9), (36), and (37) for 

1.0 

0.8- 

O 
Z>    0.6 
< 

0.4 

0.2 

-single-output 
- average 
.- maximum with Gaussian approx. 
■ maximum without Gaussian approx 
- minimum with Gaussian approx. 
■ minimum without Gaussian approx. 

1 

FIG. 8. AUC versus b for the single-output, the average, the maximum and 
the minimum derived from two independent outputs (n = 2) that arise from 
the binormal distribution pair #(0,1) and N(alb,\lb) with a = \, with and 
without the Gaussian approximation to the results of the maximum and the 
minimum. 
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FIG. 9. Comparison of the same curves as shown in Fig. 5 but calculated with Gaussian approximation of the results from the maximum and the minimum. 
Curves 1, 2, 3 and 4 (solid lines) were calculated without the Gaussian approximation (same as in Fig. 5). Curves 1', 2', 3' and 4' (dashed lines) were 
calculated with the Gaussian approximation. 

a = 1 and n = 2, along with the AUCs calculated numerically 
without the Gaussian approximation. One can see that the 
curves calculated with and without Gaussian approximation 
agree extremely well. 

One can show analytically from Eqs. (5), (9), (36), and 
(37) that the intersection points for curves calculated with the 
Gaussian approximation in Fig. 8 are given by 

b—\     for the maximum    and the minimum,        (38) 

(39) 

(40) 

(41) 

(42) 

(V2(u—l)-Vir)fl + fc-l=0 

for the maximum   and the average, 

(V2(TJ—l)-Vir)a-fe+l=0 

for the minimum    and the average, 

{yJTr-\-yfir)a + b-\=0 

for the maximum   and the single-output, 

(ylir-l-yfir)a-b+l=0 

for the minimum   and the single-output. 

Figure 9 shows the last four of these relationships as 
dashed lines along with the same curves calculated numeri- 
cally without the Gaussian approximations shown as solid 
lines (also shown in Fig. 5). The two relationships obtained 
with and without the Gaussian approximation agree except in 
the region where a> 1.6 and fc<0.55. This region has a 
single-output AUC value greater than 0.92, and therefore 
relatively little improvement can be expected from any 
method of combining multiple images because of the already 
high single-output AUC value. Also the AUC value changes 
slowly with a and b in this region; therefore, a large differ- 
ence in (a,b) corresponds a small difference in the AUC 
value. 

It is well known that the binormal model can be applied to 
a wide variety of practical situations through a generally un- 
known monotonic transformation of the data.8,9 However, the 

highly linear appearance of the normal-deviate ROC curves 
of the maximum and the minimum, together with the excel- 
lent Gaussian approximation to their probability functions, 
are surprising. These observations provide additional strong 
evidence for the robustness of the binormal model. 

C. Limitations and future work 

Our analysis of multiple computer outputs per case is mo- 
tivated by work in CAD, where typically multiple feature 
values are extracted for each image and then analyzed by a 
classifier. For example, Jiang et al.* used eight image fea- 
tures to classify microcalcifications on mammograms. When 
multiple images from the same patient are analyzed at the 
same time, it is easier to combine the classifier outputs than 
to treat a feature from multiple images (e.g., lesion area from 
MLO and CC view mammograms) as multiple features, be- 
cause the latter approach would require a larger classifier. 
Also, combining classifier outputs allows each image to be 
used separately in training and testing of the classifier, thus 
enlarging the database to some extent. These considerations 
motivated the present work. 

In this work, we assumed that the multiple outputs arise 
from the same binormal model. It is reasonable to assume the 
individual outputs to follow the binormal model because the 
binormal model has been shown to be robust across many 
applications.9 However, this assumption limits the theory to 
applications where each individual output produces the same 
ROC curve. We defer the analysis of multiple outputs that do 
not follow the same binormal distribution pair to future 
work. We also assume here that the multiple outputs are sta- 
tistically independent, which is not likely to hold in real ap- 
plications because multiple images of the same patient are 
almost always correlated. Extending our present theory to 
correlated multiple outputs is not straightforward and there- 
fore also will be deferred to future work. However, the re- 
sults that we have obtained with these simplifications pro- 
vide a mathematical understanding of the effects of the 
average, the median, the maximum, and the minimum on 
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distribution width and separation, and, therefore, on the cor- 
responding ROC curves. We expect the trend predicted by 
our theory to hold at least qualitatively in real applications, 
namely, that the average always improves diagnostic perfor- 
mance when single-output ROC curves are similar, and that 
the maximum and the minimum can outperform the average 
for small b and for large b, respectively. 

V. CONCLUSION 
We have investigated theoretically the diagnostic perfor- 

mance of using the average, the median, the maximum or the 
minimum to combine multiple computer outputs that are ob- 
tained from multiple images of the same patient in CAD, 
assuming that the computer outputs follow the same binor- 
mal model and that the multiple computer outputs are statis- 
tically independent. In this situation, the average also fol- 
lows the binormal model, whereas the maximum and the 
minimum were found to follow the binormal model approxi- 
mately. As expected, the average always improves the ROC 
curve, because it reduces the overlap between the distribu- 
tions associated with actually-negative and actually-positive 
cases. However, the maximum and the minimum can also 
improve the ROC curve, and depending on the single-output 
distributions, can outperform the average in certain situa- 
tions. We have identified the situations in which one should 
use the average, the maximum or the minimum in order to 
obtain the highest ROC curve. To the extent that these results 
apply qualitatively also to correlated outputs, as we expect, 
our theory provides guidance concerning how best to com- 
bine multiple outputs to improve diagnostic performance. 
This guidance is appropriate for applications such as repli- 
cated readings of radiographs by a single radiologist or by a 
group of radiologists with similar accuracy, and for combi- 
nation of CC and MLO views in mammography. 
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APPENDIX A: DERIVATION OF Az AS A FUNCTION 
OF a AND A 

Under the binormal model, TPF(x) = &(a-bx) and 
FPF(A;) = $(— X) as denoted in Eqs. (3) and (4). Therefore, 

Jo 
TPFrf(FPF) 

Letting y = t-a + bx, we have 

(m)(y + a-brfdy \e-(U2)x2
dx 

__  f°°  e-(l/2)(*2+l)(x-/;(.v + <7)/(*2+l))2
rfx 

2TT J-« 

7° X |      e-{V2)(y+a)2l(\+b2)dy 

1 

JlTT^l+b2 /: 
-(l/2)(y + a)2l(l+b2)dy 

= $ 
yfi+b' 

(Al) 

APPENDIX B: THE MEANS AND STANDARD 
DEVIATIONS OF THE MAXIMUM AND THE MINIMUM 
OF TWO INDEPENDENT IDENTICALLY 
DISTRIBUTED NORMAL RANDOM VARIABLES 

For two random variables xx and x2 that are drawn inde- 
pendently from N(fA,a), xt+x2 and x\— x2 are 
independent.14 We also have15 

!/-„   _i_„  \_L1I ^max^maxfjCj ,x2}= j(xl + x2)+ j|*i -x2\, 

and 

•*mm — minjjT] ,X2}— ^X^+Xi)     j 1*1    x2\ 

(Bl) 

(B2) 

Let y=X\-x2, then y is a random variable of normal 
distribution N(Q,^J2cr). Therefore, the mean of |y| is 

y\e 

+ I   ye-WW^dy 

-JlTTsjlcr J-°° 

=        1        (f° 

7" Jo 

= ,— i- ■    ye 
V27I-V20-Jo 

and the variation of \y\ is 

Vx(\y\)=W-(W 

= 7-(H)2 = 2<T2- 

so the mean of xm„ is 

dy (ICXJ/NSV)
2 

(-y)e-W(y'^2
dy 

dy- 
2<T 

(B3) 

2a- 
= 2<T

1 (B4) 

1     f» 

V2ir J — 

= 2^J-4J-« 

-bx)e-{m)x dx 

e-W2dt\e-<m)*2dx. 

*max=2(*l+*2) + 2|y| = 2(^ + M)+-7= = ^+-7=- 

(B5) 

Since xx+x2 and X\—x2 are independent, the standard de- 
viation of *max is 
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SD,    = ViVart>,+*2) + *Var(|y|) 

V^2+-2)+?(2-2-^)=V^- 
(B6) 

Similarly, the mean and standard deviation of xmin are 
given by 

•*min     /*■ 

or 

77 

SD, . = V   1 - - °"- 

(B7) 

(B8) 
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Radial gradient-based segmentation of mammographic microcalcifications: 
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Precise segmentation of microcalcifications is essential in the development of accurate mammo- 
graphic computer-aided diagnosis (CAD) schemes. We have designed a radial gradient-based seg- 
mentation method for microcalcifications, and compared it to both the region-growing segmentation 
method currently used in our CAD scheme and to the watershed segmentation method. Two ob- 
server studies were conducted to subjectively evaluate the proposed segmentation method. The first 
study (A) required observers to rate the segmentation accuracy on a 100-point scale. The second 
observer evaluation (B) was a preference study in which observers selected their preferred method 
from three displayed segmentation methods. In study A, the observers gave an average accuracy 
rating of 88 for the radial gradient-based and 50 for the region-growing segmentation method. In 
study B, the two observers selected the proposed method 56% and 62% of the time. We also 
investigated the effect of the proposed segmentation method on the performance of computerized 
classification scheme in differentiating malignant from benign clustered microcalcifications. The 
performances of the classification scheme using a linear discriminant analysis (LDA) or a Bayesian 
artificial neural network classifier both showed statistically significant improvements when using 
the proposed segmentation method. The areas under the receiver-operating characteristic curves for 
case-based performance when using the LDA classifier were 0.86 with the proposed segmentation 
method, 0.80 with the region-growing method, and 0.83 with the watershed method. © 2004 
American Association of Physicists in Medicine.   [DOI: 10.1118/1.1767692] 

Key words: computer-aided diagnosis, mammography, calcifications, segmentation, classification, 
observer evaluation 

I. INTRODUCTION many pattern recognition problems, the first stage of CAD 
schemes is the identification and segmentation of suspicious 

Screening mammography is the most effective technique for breast iesions. The second stage is feature extraction, in 
detecting breast cancer in its early stages.1 However, the in- which useful inforrnatjon about the segmented lesions or ob- 
terpretation of mammograms for breast cancer diagnosis is a jects is extracted. The third stage is a classifier that weights 
difficult task. Currently, 10%-30% of breast cancers are Klewmt features in order to differentiate true positive from 
missed at mammography screening either due to technical Mx positive detections or maiignant from benign iesi0ns. If 
error, lesion subtlety, misinterpretation, or oversight. • A sig- any of these mree stages is individually improved, it is likely 
nificant number of false positive biopsies are also performed. tQ .^^ ^ oyeral| a(;           Qf ^ CAD scheme 

These are costly and cause unnecessary trauma to the patient. approaches to further improve the accuracy of CAD 
Although various techniques are being developed to improve ,           /    iU     , t    .          ,    .     ._   ..        t      _ "...        ,        .7. .      ,,                     .       ■         . schemes for the detection and classification of mammo- 
the sensitivity and specificity of breast cancer detection and ,.,.       ,        .         .     ,      .»„.r.i. .          r             ,     .   lt_       ,    .   .   • graphic lesions have been developed. Most of these ap- charactenzation, mammography is the only technique ca- °   r ,                     .                ,   ,    .   ,            , 
pable of detecting and characterizing breast cancer that is Proaches use extractlon of ™»pholog.cal, textural, geometn- 
developing as clustered microcalcifications.4 Computer-aided cal features from the segmented lesions and are based on 
diagnosis (CAD) schemes that automatically detect and char- concePts of comPuter vision ** Pattern ^cognition.   Alter- 
acterize abnormal lesions on mammograms have been de- nate approaches attempt to incorporate additional features, 
signed to provide a second opinion to radiologists. It has including information on the mammographic parenchymal 
been demonstrated that reading with CAD can significantly Patterns and a Priori information on the patient demographic 
reduce the error rate under simulated mammography screen- information, medical, and family history.   Also, the addition 
ing conditions5'6 and lower the number of biopsy recommen- of the Breast Imaging Reporting and Data System (BI- 
dations for benign breast lesions.7"9 However, the accuracy RADS) descriptors12 provided by radiologist has demon- 
of CAD schemes can be improved, allowing radiologists to strated an improvement of the computerized classification 
further improve their management decisions. scheme   accuracy   when   combined   with   the   computer- 

CAD schemes for detection or characterization of mam- extracted lesion features.13 Although these approaches can 
mographic lesions generally consist of three stages. As with potentially  be  used  to  improve  the  accuracy  of CAD 
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schemes, there is further need for improvements to the accu- 
racy and reproducibility of CAD schemes. 

Veldkamp and Karssemeijer14 demonstrated that micro- 
calcification segmentation strongly influences the accuracy 
of the shape and size features and thus the results of classi- 
fying clustered microcalcifications into malignant or benign 
categories. In the past ten years, many segmentation tech- 
niques developed in diverse imaging and signal processing 
fields have been applied to identify the contours of mammo- 
graphic microcalcifications. Four popular approaches for 
segmentation are (1) thresholding methods, (2) edge-based 
methods, (3) region-based methods, and (4) connectivity- 
preserving relaxation methods. Thresholding and region- 
growing techniques are the most common segmentation 
methods used in CAD schemes. Chan et al.15 used a local 
noise-based threshold for region-growing in a signal- 
enhanced image. Jiang et al.16 applied a background trend 
correction and used a signal-dependent threshold for region 
growing. Other approaches have been applied to mammo- 
graphic   microcalcifications   and   to   objects   in   phantom 

17-19 images. 
In this study, we investigated a novel approach for auto- 

mated microcalcification segmentation using a radial 
gradient-based method. The intention was to develop a seg- 
mentation method that is independent of the imaging system, 
and to segment lesions accurately in both standard, compres- 
sion, and magnification views. Hopefully, parameter adjust- 
ments between modalities and view types would not be re- 
quired. We performed observer evaluations of the accuracy 
of the proposed method and compared it to both the region- 
growing segmentation method currently used in the CAD 
scheme developed at the University of Chicago and to the 
watershed method. We also incorporated the proposed seg- 
mentation method into a computerized classification scheme 
and studied its effect on the accuracy of computer perfor- 
mance in differentiating malignant from benign clustered mi- 
crocalcifications. To date, we are unaware of any studies 
which evaluate accuracy of microcalcification segmentation 
with respect to observers' opinions. To the best of our knowl- 
edge, there are also no published reports on the effects of 
segmentation on a CAD classification scheme. 

II. MATERIALS AND METHODS 

We have developed a radial gradient-based segmentation 
method to accurately identify the contours of individual mi- 
crocalcifications. The accuracy of the proposed method was 
evaluated through observer studies and compared to two 
other segmentation methods. The proposed segmentation 
method was also incorporated into a computerized scheme 
for classification of malignant versus benign clustered micro- 
calcifications in order to determine if the computer perfor- 
mance improved with the proposed segmentation method. 

A. Database 

The database for this study consisted of 144 microcalcifi- 
cation clusters from mammograms of 76 patients. The cases 
were selected from patient files in the Department of Radi- 
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FIG. 1. Histogram of the number of microcalcifications per cluster on our 
database of 144 mammographic images. 

ology at the University of Chicago. Each case was biopsy 
proven. Fifty-nine mammograms contained malignant micro- 
calcification clusters, 85 were benign. The mammograms 
were digitized with a (LUMISYS) laser scanner at a pixel 
size of 100 /am and 12-bit gray scale, which is consistent 
with pixel size and bit depth used in the current CAD 
scheme. The histogram of the number of manually identified 
microcalcifications per cluster is shown in Fig. 1. 

A subset of the database described above was used for the 
observer evaluation of the proposed radial gradient-based 
segmentation method because of the length of time required 
for the observer study. The subset was chosen to be repre- 
sentative of the entire database and contained microcalcifi- 
cations with various sizes and shapes. This subset consisted 
of 50 microcalcification clusters from mammograms of 31 
patients. 

B. Segmentation methods 

The three different segmentation methods we evaluated 
were the proposed radial gradient-based segmentation 
method, the region-growing method used in the current CAD 
scheme, and the watershed method. All segmentation meth- 
ods begin with manually identified seed points which were 
carefully selected to represent the centers of the individual 
microcalcifications. This manual selection could be replaced 
by an automated detection scheme to identify microcalcifi- 
cation locations. However, in this study, we chose to use 
manually identified seed points to avoid incorporating false- 
positive computer detections into analysis by the CAD clas- 
sification scheme, and also to ensure that every microcalci- 
fication was analyzed. 

1. Region-growing segmentation method currently 
used in CAD scheme 

The segmentation method used in the current CAD 
scheme is a region-growing method, which is among the 
most popular methods used.20 Preprocessing is performed on 
the image before microcalcification segmentation. This pre- 
processing stage consists of an application of a background 
trend correction using a third-degree polynomial fit in the 
1 X 1 cm2 region centered on the manually identified seed 
point. A four-point connectivity region-growing technique 
based on two consecutive gray level thresholds is then used 
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to identify member pixels that belong to each microcalcifi- 
cation. The thresholds are defined based on the local gray 
level characteristics. The first threshold is 50% of the maxi- 
mum intensity in a 5 X 5 pixel region around the seed point; 
the second threshold is 50% of this same maximum intensity 
minus the residual background offset, which is computed as 
the mean intensity in the 1 X 1 cm2 region excluding pixels 
retained after the first threshold. Thus, starting at a manually 
identified seed point (xs ,ys) with preprocessed image inten- 
sity values off(xs,ys), all four-connected neighboring pix- 
els are visited and pixels are added if their intensities f(x,y) 
are above the defined threshold. For both thresholds, this 
process is repeated until all four-connected pixels with inten- 
sity values above the threshold are found. The microcalcifi- 
cation contour is completely identified when no more neigh- 
boring pixels can be added or when the segmented 
microcalcifcation size reaches a maximum area of 121 pixels 
at 100 fim resolution. 

2. Watershed segmentation method 

The watershed method is well known in topography.21 It 
is a powerful mathematical morphology tool for segmenta- 
tion that does not involve a priori information. It treats im- 
ages as topographic surfaces. In our case, mammographic 
microcalcifications correspond to small elevations. Consider- 
ing the gradient magnitude at each pixel as the surface 
height, regions are formed by simulating a flooding of the 
image that starts at a local minimum of the gradient image 
function. The contour of each segmented region stops ad- 
vancing when neighboring flooding regions meet. The prin- 
cipal advantage of the watershed segmentation method over 
other methods is that it requires no parameter input, includ- 
ing thresholds.22 In this study, the watershed method was 
applied in a manner such that neither preprocessing nor 
background trend correction was necessary. For each micro- 
calcification, the contour was identified by applying the 
flooding simulation to an inverse gray-level image starting at 
the manually identified seed point. 

3. Radial gradient-based segmentation method 

We developed and implemented a novel gradient-based 
segmentation method. It does not require any preprocessing 
of the image or background trend correction. It is indepen- 
dent of the pixel size of the imaging system and requires no 
input parameters such as thresholds. The radial gradient- 
based method individually segments microcalcifications 
starting from each manually identified seed point. For each 
seed point, the mammogram is transformed into polar coor- 
dinates. Each radial distance and angle from the seed point 
under consideration corresponds to a bilinear-interpolated 
gray level in the image. This transformation is required to 
produce continuous microcalcification contours in contrast to 
the discrete contours output by the two segmentation meth- 
ods previously described. From this transformed image, the 
radial gradient map is computed. For each pixel with inten- 
sity /(r,0), the radial gradient g(r,d) is expressed as 

g(r,ff) = 
f(r,6)-f(0,6) 

(1) 

where r is the radial distance of a given pixel to the seed 
point, and 6 is the angle from the horizontal image axis. The 
quantity /(0,#) is the gray level intensity at the seed point 
and is constant for all angles 6. 

A pixel is considered to be a candidate member of the 
microcalcification contour if it provides the minimal radial 
gradient G, as described below. To avoid local minima, a 
restriction is imposed so that all microcalcification contour 
pixels are members of a unique and continuous minimal ra- 
dial gradient contour, also called the minimal radial gradient 
road map. Thus, we search the candidate set L of consecutive 
microcalcification contour pixels that minimizes 

G = % gin.O,),    L = {(r„0,),    i=\,...,N}, (2) 
lei 

where N is the number of points sampled on the candidate 
contour and set to 180. 

We first extract the optimal candidate set L of contour 
pixels from which the global radial gradient minima G sur- 
rounding the seed point is obtained. This optimal set L im- 
poses an upper limit on the distance of a contour pixel from 
the seed point. It is possible that this optimal set of points 
might be discontinuous and many combinations of pixel con- 
tours consistent with this limit must be tested. Therefore, to 
avoid a computational burden in the search, we limit the road 
map search to the set M, a sample of nine points equally 
distributed between 0 and 2 77-, given by 

M = {(rj,0j),    /= 1 9}. (3) 

For each possible set M of candidate contour pixels, the 
path of the road map defined by the nine points is determined 
using a first-order polynomial fit between the points. There- 
fore, for each possible set M, a continuous partition L is 
defined as a potential road map of the microcalcification con- 
tour. For each new partition, the radial gradient contour func- 
tion G is calculated. 

Consider G0 to be the initial value of the radial gradient 
road map function G before the first iteration and M to be 
the new set of nine points identified from the image. If the 
newly calculated minimal radial gradient G is lower than 
G0, then the new set M of nine points is retained as potential 
contour pixels and G„ is updated by the new G value. If the 
newly calculated G is greater than or equal to G„, then M is 
rejected. The iterative process stops when no more changes 
in the partition M can further minimize G. At this point, the 
continuous and closed contour has been completely deter- 
mined. To avoid drawing too many possible partitions M, we 
incorporate information about the spatial extent of previously 
segmented microcalcifications. 

Other complex methods could be attempted using active 
contour or probabilistic techniques.23 However, parameters 
required in these methods are difficult to define due to the 
small size of the microcalcifications. In addition, adjustments 
of parameters in these methods may be complicated by de- 
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pendence on the imaging system used, especially its corre- 
sponding spatial resolution. 

C. Observer evaluation of segmentation accuracy 

The accuracies of the three segmentation methods were 
qualitatively evaluated in observer studies. Since it is ex- 
tremely difficult and very time consuming for radiologists to 
manually outline the contour of each microcalcification in a 
cluster, we instead conducted two different observer studies 
using two separate user interfaces. These studies required 
visual assessment only and no diagnostic or management 
decision, therefore, the participation of radiologists was not 
necessary. Two observers participated in each study. The par- 
ticipants were one radiologist and three scientists. The scien- 
tists were experienced in mammography and medical imag- 
ing with 5-10 years of work in the field. No observers were 
involved in the development of any of the segmentation 
methods. They were not told about the difference in the seg- 
mentation methods. Observer bias was further avoided by 
not visually identifying any of the three methods for observ- 
ers either before or during the study. 

In both user interfaces, the digitized mammograms were 
displayed with the manually identified center locations of the 
microcalcifications superimposed on the images. This was 
done so that observers could mentally visualize the contours 
that they would draw for each microcalcification in the clus- 
ter and to ensure that all observers analyzed the same set of 
microcalcifications. The observers were then shown the 
computer-extracted contour superimposed on the digitized 
mammograms. Observers were allowed to adjust the image 
brightness and contrast, zoom to specific regions of the im- 
age, and highlight segmented microcalcification contours to 
see the degree of overlap, if any, between neighboring mi- 
crocalcifications. 

1. Observer study A 

In observer study A, two observers rated the accuracy of 
segmentation for both the proposed radial gradient-based 
method and the region-growing method. These two segmen- 
tations were displayed by superimposing the two contours on 
adjacent copies of the original image. Observers were in- 
structed to rate the accuracy of segmentation for each 
method based on how well the computer-segmented contour 
agreed with their mentally visualized contours in terms of 
criteria such as segmented shape and area. Observers pro- 
vided a single accuracy rating for each segmentation method, 
which they were instructed was the average value over all 
microcalcifications in the cluster. The accuracy rating was on 
a 100-point scale. A rating of 100 implied that they observed 
perfect segmentation by the computer, and 0 implied com- 
pletely inaccurate segmentation. These accuracy ratings were 
entered directly into the computer by each observer. Intraob- 
server consistencies were evaluated by having observers ran- 
domly review cases more than one time. 

TABLE I. Eight computer-extracted features for classification of malignant 
and benign microcalcification clusters. 

Feature index Feature description 

1 Cluster circularity 
2 Cluster area 
3 Number of microcalcifications 
4 Average effective volume of microcalcifications 
5 Relative standard deviation in effective thickness 
6 Relative standard deviation in effective volume 
7 Average area of microcalcifications 
8 Second highest microcalcification-shape-irregularity 

measure in a cluster 

2. Observer study B 

Observer study B was a preference study between the 
three segmentation methods. Observers were instructed to 
select their preferred method from three simultaneously dis- 
played segmentation methods: the proposed radial gradient- 
based segmentation method, the watershed method, and the 
region-growing method. The user interface designed for this 
observer study simultaneously displayed three images with 
the three different segmentation results superimposed on the 
original digitized mammogram. The three displayed segmen- 
tation methods were randomly reordered from one case to 
the next. Observers were instructed to choose their preferred 
segmentation method using criteria such as the segmented 
shape and area. For each set of three segmentation results, 
the observer entered the preferred method into the computer. 
Intraobserver consistencies were evaluated by having observ- 
ers randomly review cases multiple times. 

D. Effect of segmentation method on CAD 
performance 

We evaluated the computerized classification scheme per- 
formance when using each of the three segmentation meth- 
ods. In the classification scheme for malignant versus benign 
clustered microcalcifications, shape and size features are ex- 
tracted both for individually segmented calcifications and for 
the cluster. We used the same eight features reported in Jiang 
etal.16 as detailed in Table I. The performances of these 
extracted features closely depend on the accuracy of the mi- 
crocalcification segmentation used, and therefore, we ex- 
pected that using more precise segmentation would improve 
the accuracy of the CAD classification scheme. To determine 
the potential improvement to the CAD scheme, we compared 
classification performance based on the proposed radial 
gradient-based method, the watershed method, and the 
region-growing technique currently used in the classification 
scheme. 

A linear discriminant analysis (LDA) classifier and a 
Bayesian artificial neural network (BANN) classifier were 
employed separately in this study. We chose to evaluate the 
CAD classification performance using both LDA and BANN 
classifiers in order to draw more robust conclusions on the 
CAD scheme performance when using each of the three seg- 
mentation methods. The LDA classifier has the advantage of 
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FIG. 2. Example of segmentation results for a malignant microcalcification 
cluster: (a) original mammogram, (b) superimposed manually identified mi- 
crocalcification locations, (c) region-growing method, (d) radial gradient- 
based method, and (e) watershed method contours. 

FIG. 3. Example of segmentation results for a benign microcalcification 
cluster: (a) original mammogram, (b) superimposed manually identified mi- 
crocalcification locations, (c) region-growing method, (d) radial gradient- 
based method, and (e) watershed method contours. 

computational speed in the training stage, and is often a pre- 
ferred choice when the number of available training samples 
is small.24 The BANN classifier avoids the overtraining prob- 
lem and also incorporates uncertainty about classifier coeffi- 
cients into its output.25 The LDA and BANN classifiers were 
implemented using the eight extracted features as inputs. The 
leave-one-out technique was used to train these classifiers. 
Both classifiers output the likelihood of malignancy for each 
cluster. The accuracies of the LDA and BANN classifiers 
were evaluated separately with receiver-operating character- 
istic (ROC) curve methodology and the area under the ROC 
curve (Az) was used as a performance index. 

III. RESULTS 

A. Segmentation methods 

The three segmentation methods were applied to the mi- 
crocalcifications in our database. Figures 2(a) and 3(a) show 
malignant and benign mammographic microcalcification 
clusters, respectively. The corresponding manually identified 

locations of the microcalcifications are shown in Figs. 2(b) 
and 3(b). The segmentation from the region-growing method 
used in the current CAD scheme is illustrated in Figs. 2(c) 
and 3(c). The proposed radial gradient-based segmentation 
method is illustrated in Figs. 2(d) and 3(d), and the water- 
shed segmentation method in Figs. 2(e) and 3(e). Three main 
differences between the resulting contours from the three 
segmentation methods are evident in Figs. 2 and 3. The sizes 
of the segmented calcifications typically were smaller for the 
region-growing method, larger when using the watershed 
method, and intermediate for the proposed radial gradient- 
based method. The shapes of the microcalcification contours 
were also very different depending on the segmentation 
method used. The proposed radial gradient-based method 
tended to extract smoother, rounder contours than the some- 
what more irregular and jagged contours extracted when us- 
ing the other two segmentation methods. The overlaps be- 
tween segmented microcalcifications were also markedly 
different between the three methods. This is because both the 
watershed and proposed radial gradient-based methods in- 
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FIG. 4. Histograms of accuracy ratings of (a) observer 1 and (b) observer 2. 

elude criteria that eliminate overlap between neighboring mi- 
crocalcifications, while the region-growing method allows 
for such overlap. 

B. Observer evaluation 

Observer study A required observers to provide accuracy 
ratings on a 100-point rating scale for both the proposed 
radial gradient-based segmentation method and the region- 
growing method currently used in CAD scheme. Figure 4 
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FIG. 5. Cumulative histograms of accuracy ratings of (a) observer 1 and (b) 
observer 2, when using the accuracy rating as an operating threshold. Im- 
ages with accuracy ratings above or equal to the operating threshold are 
considered as being adequately segmented. 

shows histograms of the observers' accuracy ratings after 
reviewing all images. The accuracy ratings for the region- 
growing method were 67.9 ±22.9 for the first observer and 
31.4 ±24.5 for the second observer. For the radial gradient- 
based method, the accuracy ratings were 91.7±3.2 for the 
first observer and 83.2± 12.4 for the second observer. Cumu- 
lative histograms of observers' accuracy ratings when using 
the accuracy rating as an operating threshold are shown in 
Fig. 5; a microcalcification cluster is considered to be ad- 
equately segmented if the observer rating is above or equal 
to the operating threshold. For a threshold accuracy rating of 
50, both observers preferred the proposed radial gradient- 
based segmentation method to the region-growing method. 
At the same threshold accuracy rating, the proposed radial 
gradient-based method was considered by both observers to 
adequately segment the entire database. At the same thresh- 
old, the two observers considered the region-growing 
method to adequately segment 77 and 25 % of the cases, 
respectively. 
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FIG. 6. Intraobserver variability in rating the accuracies of the region-growing method and the proposed radial gradient-based method: (a) observer 1 and (b) 
observer 2. 
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TABLE II. For observer study B, the preference of the two observers among 
the three segmentation methods. Results are displayed in terms of both 
numbers of cases and percentages of the database. Fifty microcalcification 
clusters were randomly reviewed multiple times. 

Observer 1 
(all reviews) 

Observer 2 
(all reviews) 

Region-growing 
Radial gradient-based 
Watershed 

34 (20%) 
94 (56%) 
41 (24%) 

31 (18%) 
104 (62%) 
34 (20%) 

Intraobserver variability in rating the two segmentation 
techniques was evaluated and is illustrated in Fig. 6. The 
correlation between the accuracy ratings given at first and 
second reviews was computed. For the region-growing 
method, the correlation was 0.93 for the first observer and 
0.64 for the second observer. For the proposed radial 
gradient-based method, the correlations were 0.97 for the 
first observer and 0.81 for the second observer. Interobserver 
variability was also analyzed. The correlation between the 
two observers' accuracy ratings was 0.77 when using accu- 
racy ratings given at first review and 0.76 for all accuracy 
ratings. Student's t tests for paired data were performed and 
demonstrated a statistically significant difference in accuracy 
ratings between the region-growing and proposed segmenta- 
tion methods.26 For accuracy ratings given at first review, the 
t value was 3.4 at the 0.001 level of significance, while / 
estimated was 8.53. For all accuracy ratings, the t value was 
3.29 at the 0.001 level of significance, while t estimated was 
15.27. 

Observer study B consisted of selecting the preferred seg- 
mentation method from the results displayed for the water- 
shed, the region-growing, and the radial gradient-based 
methods. When reviewing the image for the first time, the 
two observers preferred the proposed radial gradient-based 
method 84 and 90 % of the time. The results of observers' 
selection for all images reviewed are shown in Table II. 
When accounting for the display of the same cases multiple 
times, the proposed radial gradient-based method was pre- 
ferred by the observers 56 and 62 % of the time. Their other 
selections were equally distributed between the other two 
segmentation methods. The percent agreements between the 
two observers' preferences when accounting for reviewing 
the same cases multiple times are shown in Table III. The 
maximum percent agreement occurred with the radial 
gradient-based segmentation method. It was 78% when re- 
viewing the image for the first time and 41% when account- 
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FIG. 7. Image-based performances for classification of malignant vs benign 
microcalcification clusters using a LDA classifier to merge the eight features 
extracted from segmented microcalcifications. 

ing for all image reviews. Their other percent agreements 
and disagreements were equally distributed between the 
other possible matches of segmentation method preferences. 

C. Effect of segmentation method on CAD 
performance 

The ROC curves for CAD classification scheme when us- 
ing each of the three different segmentation methods with the 
LDA classifier are shown in Fig. 7 for image-based perfor- 
mance and Fig. 8 for case-based performance. Figures 9 and 
10 illustrate the ROC curves for image-based and case-based 
performances, respectively, when using the BANN classifier. 
The improvement in CAD performance for the classification 
of malignant versus benign microcalcification clusters when 
using the proposed radial gradient-based segmentation 
method was independent of the classifier used to merge the 
features. For the BANN classifier, Az for the case-based per- 
formance was 0.82 when using the proposed radial gradient- 
based method, 0.73 when using the region-growing method, 
and 0.77 when using the watershed method. For the LDA 
classifier, Az for the case-based performance was 0.86 when 
using the proposed radial gradient-based method, 0.80 when 
using the region-growing method, and 0.83 when using the 
watershed method. The difference in classification perfor- 
mance between the proposed radial gradient-based method 

TABLE III. For observer study B, percent agreement between the two observers' preferences when accounting 
for reviewing the same cases multiple times. 

Observer 1 

Radial gradient-based Region-growing Watershed 

Observer 2 Radial gradient-based 
Region-growing 
Watershed 

41 
11 
9 

7 
5 
7 

7 
5 
8 

Medical Physics, Vol. 31, No. 9, September 2004 



2655 Paquerault et al.: Radial gradient-based segmentation of mammographic microcalcifications 2655 

Radial gradient-based (Az = 0.86) 

-Watershed (Az = 0.83) 

-Region-growing (Az = 0.80) 

0   0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9   1 

FPF 

FIG. 8. Case-based performances for classification of malignant vs benign 
microcalcification clusters using a LDA classifier to merge the eight features 
extracted from segmented microcalcifications. 
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FIG. 10. Case-based performances for classification of malignant vs benign 
microcalcification clusters using a BANN classifier to merge the eight fea- 
tures extracted from segmented microcalcifications. 

and the region-growing method currently used in the CAD 
scheme was found to be statistically significant.27 The com- 
parisons between other pairs of segmentation methods did 
not demonstrate differences that were statistically significant. 
The p-values are summarized in Table IV. 

IV. DISCUSSION 

In this research, we developed and applied a radial 
gradient-based segmentation method for mammographic mi- 
crocalcifications, which in turn improved the computerized 
classification of malignant versus benign microcalcification 
clusters. The results of accuracy rating and preference ob- 
server studies showed that the proposed radial gradient-based 
method was preferred by observers. This indicates that our 
proposed segmentation method closely matches human vi- 
sual criteria for segmentation of microcalcifications such as 

-I 1 1 1 1 1 r- 
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FIG. 9. Image-based performances for classification of malignant vs benign 
microcalcification clusters using a BANN classifier to merge the eight fea- 
tures extracted from segmented microcalcifications. 

size, shape, and nonoverlapping criteria for segmented mi- 
crocalcifications. Performance of the CAD scheme improved 
when incorporating the proposed segmentation method. 
Similar trends were observed when using either a LDA or a 
BANN classifier. 

In this study, we chose to design a segmentation technique 
that does not require any preprocessing of the mammogram, 
background trend correction, or corrections for imaging sys- 
tem parameters including pixel size. Unlike the current 
region-growing method, the proposed radial gradient-based 
method has the advantage of being independent of pixel size 
and other parameters of the imaging system. Background 
correction and other preprocessing stages were not compo- 
nents of either our proposed method or the watershed 
method. We expect that using these preprocessing stages may 
result in more accurate segmentation, specifically in cases 
where microcalcifications lie on the border of dense breast 
tissue, or occur near the skin line. In addition, background 
trend correction may have eliminated the tendency of the 
watershed segmentation to over-segment onto normal breast 
tissue. It is important to note that elimination of preprocess- 
ing allows a segmentation method to be more easily applied 
to a wide range of mammographic image types, including 
both conventional and magnification views acquired on 
screen-film or digital systems. 

Manually identified locations of microcalcifications were 
used as seed points for segmentation. In a fully automated 
CAD scheme for detection and classification of mammo- 
graphic lesions, this step is eliminated.28'29 The proposed ra- 
dial gradient-based segmentation method can easily be ap- 
plied to these computer-identified locations. For the purposes 
of this study, we did not use automated detection of the mi- 
crocalcification locations because it would have complicated 
our comparison of the proposed segmentation method with 
the region-growing method currently used in the CAD clas- 
sification scheme. Also, it was previously shown that input- 
ting more false positive detected microcalcifications into the 
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TABLE IV. Results for testing the statistical significance of differences in A. values, or the areas under ROC 
curves. 

Image- Case- 
based based 

Comparison Classifier p-value p-value 

Region-growing vs Radial gradient-based LDA 0.03 0.03 
Region-growing vs Watershed LDA 0.18 0.38 
Radial gradient-based vs Watershed LDA 0.26 0.09 
Region-growing vs Radial gradient-based BANN 0.03 0.06 
Region-growing vs Watershed BANN 0.47 0.27 
Radial gradient-based vs Watershed BANN 0.05 0.18 

computerized classification scheme resulted in decreased 
classification performance, when using the region-growing 
method.29 Future research is necessary to determine whether 
the same result occurs when incorporating the proposed ra- 
dial gradient-based segmentation method into the CAD 
scheme. 

In this work, a set of eight features based on shape and 
size of the cluster and of the microcalcifications was used, 
identical to that used in the current CAD scheme for classi- 
fication of malignant versus benign microcalcifications. We 
chose to keep this set of features constant, as changes to 
other stages of the CAD scheme would have made it difficult 
to isolate the direct influence of the segmentation stage on 
the CAD scheme performance. However, many studies have 
focused on developing and identifying features to better dis- 
criminate malignant from benign microcalcification clusters. 
Evaluating the proposed segmentation method's effect on 
other features is an area for future investigation. 

V. CONCLUSION 

We developed and evaluated a radial gradient-based seg- 
mentation method to more accurately extract mammographic 
microcalcification contours, and thereby improve computer- 
ized classification of malignant versus benign microcalcifi- 
cation clusters. The advantages of our proposed segmenta- 
tion method include its independence from the 
mammographic imaging system and its independence of ex- 
ternal parameters associated with intensity thresholds and 
pixel size. Two observer studies demonstrated that the micro- 
calcification contours resulting from our proposed method 
were strongly preferred to contours resulting from the 
region-growing method or from the watershed method. The 
proposed radial gradient-based segmentation method was in- 
corporated into a CAD scheme for classification of malig- 
nant versus benign microcalcification clusters, demonstrating 
that more accurate microcalcification segmentation resulted 
in statistically significant improvements to the performance 
of the CAD classification scheme. More studies are under- 
way to further improve the performance of the CAD scheme 
by identifying and developing features that will utilize the 
highly accurate contours output by the proposed segmenta- 
tion method. 
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1. Introduction 

Computer-aided diagnosis (CADx) techniques have been developed to classify breast lesions as 

malignant or benign in digitized screen-film mammograms. Several of these techniques have 

achieved promisingly high levels of performance (Getty et al. 1988; Jiang et al. 1996; Baker et 

al. 1996; Chan et al. 1999; Veldkamp et al. 2000; Huo et al. 2002). CADx can potentially help 



radiologists improve biopsy recommendations by reducing the number of biopsies performed on 

suspicious but benign lesions and at the same time improve sensitivity of diagnostic 

mammography (Jiang et al. 1999). Full-field digital mammography (FFDM) offers an 

opportunity to image breast lesions better (Lewin et al. 2002; Skaane and Skjennald 2004). 

Direct digital acquisition in FFDM makes CADx convenient and logical, eliminating the extra 

step of film digitization and its associated image degradation (Pisano et al. 2001). 

We have previously developed a CADx technique based on digitized screen-film mammograms 

to classify breast calcifications as malignant or benign (Jiang et al. 1996; Jiang et al. 1999). The 

purpose of this study was to evaluate this CADx technique on FFDM images. In this initial 

study, we did not optimize performance of the computer technique for FFDM images. Therefore 

this study was an independent evaluation of the computer technique. The only modification 

made to the computer technique was in computer detection of calcifications to reduce required 

interactive input from radiologist and to make the computer technique more convenient to use. 

Therefore, in addition to evaluating the performance of the computer technique on FFDM 

images, this study also evaluated the computer technique as it would be used clinically. 

2. Materials and Methods 

2.1. Cases and Readers 

This study included all diagnostic mammography cases done on a General Electric Senograph 

2000D FFDM unit in our institution during 2002 and the spring of 2003. We identified 49 cases 

of suspicious calcifications not associated with a mass for which a biopsy was performed and 

definitive diagnosis was available. Of these cases, 19 contained cancers (13 of which were 



DCIS) and 30 contained benign calcifications. These cases were used in this study. Four 

radiologists read the cases retrospectively. Three radiologists were attending radiologists 

specialized in mammography and one radiologist was within the first several months of a 

mammography fellowship training. 

2.2. Computer-User Interface and Observer Study 

A computer-user interface including softcopy reading of mammograms was used in this study. 

Two standard view mammograms were displayed one at a time. After reading a mammogram, 

the radiologist was asked to draw a rectangular box using a computer mouse to surround 

calcifications in question in that image. The radiologist was instructed to draw the box large 

enough to enclose all calcifications that would be appropriate to target in a hypothetical event of 

biopsy but no larger than necessary for enclosing only the calcifications. After reviewing both 

images and outlining the calcifications in both images, the radiologists was asked to enter BI- 

RADS assessment of 2 (benign, no biopsy), 3 (probably benign, no biopsy), 4 (suspicious, 

biopsy), or 5 (malignant, biopsy). Once the radiologist entered a BI-RADS assessment, the 

computer-estimated likelihood of malignancy was displayed numerically as a percentage for 

each of the two images. At this point, the radiologist could repeat reviewing either image. The 

radiologist could also draw a new box to ask the computer repeat its calculation, potentially 

modifying results of the estimated likelihood of malignancy. After reviewing all the 

information, the radiologist was asked to enter BI-RADS assessment again. This second BI- 

RADS assessment based on mammogram review and computer-estimated likelihood of 

malignancy could differ from the first based on mammogram review alone. 



2.3. Computer Estimation of Likelihood of Malignancy 

Computer analysis of the calcifications identified by the radiologist consisted of two 

components. The first component was computer detection of the individual calcifications and 

the second component was computer calculation of the likelihood of malignancy. Computer 

detection of individual calcifications was necessary because the locations of individual 

calcifications were needed for calculation of the likelihood of malignancy. Computer detection 

of calcifications was confined within the box drawn by the radiologist and was based on a 

technique described elsewhere (Salfity et al. 2003). To balance between maximizing the 

detection of true-positive calcifications and minimizing the detection of false-positive image 

noise, the computer detection was run four times; each time the computer assumed the region 

contained a different number of calcifications (either less than 6, between 6 and 10, between 10 

and 30, or more than 30). The detection technique was designed in such a way that it would 

select appropriate thresholds to detect a number of calcifications that fall within the assumed 

range of number of calcifications. The detection results of one of the four independent runs were 

retained as the final detection result based on a consideration of the pattern of the detection 

results of all four runs. For example, if an assumption that a region contained less than 6 

calcifications yielded the detection of 6 calcifications and an assumption that the region 

contained between 6 and 10 calcifications yielded the detection of 10 calcifications, then the true 

number of calcifications present was considered to be likely more than 10. However, if an 

assumption of between 6 and 10 yielded 10 calcifications, and an assumption of between 10 and 

30 calcifications yielded 18 calcifications, but an assumption of more than 30 calcifications 

yielded 30 calcifications, then the detection results of 18 calcifications were retained as the final 



detection result. In a few cases the computer failed to determine the number of calcifications. In 

these cases, the radiologist was asked to provide this information. 

Once individual calcifications were detected within the encompassing box indicated by the 

radiologist, computer calculation of the likelihood of malignancy proceeded as described in 

detail elsewhere (Jiang et al. 1996; Jiang et al. 1999). Briefly, the computer extracted eight 

image features: the size and shape of the cluster of calcifications, the number, average size, 

average size times contrast, uniformity in contrast, uniformity in size times contrast, and a shape- 

linearity measure of individual calcifications. The computer then used an artificial neural 

network to merge these image features into an estimate of the likelihood of malignancy. This 

computer classification technique was originally developed on digitized screen-film 

mammograms (Jiang et al. 1996; Jiang et al. 1999) and was used in this study without 

modification: the same image features were extracted from the digital images as from digitized 

images, the same feature extraction techniques were used without modification, and the same 

artificial neural network was used without retraining. One reason for this to be possible was that 

the GE digital mammograms were processed from raw images through a logarithmic 

transformation to make the processed image look like film. Another reason was that the GE 

digital mammograms had a 100-micron pixel size, the same as the digitized mammograms we 

used previously. 

2.4. Data Analysis 

ROC curves were computed from the observer study data. ROC curves were computed for the 

BI-RADS assessments given by each radiologist reading mammograms alone. Separate ROC 



curves were computed for the BI-RADS assessments given by each radiologist reading 

mammograms with the computer-estimated likelihood of malignancy. ROC curves were also 

computed for the computer-calculated likelihood of malignancy. Because each radiologist 

independently drew a box to indicate suspicious calcifications, for a given mammogram the 

computer calculated a potentially different value of the likelihood of malignancy when used by 

different radiologists. Therefore, four ROC curves were computed for the computer-calculated 

likelihood of malignancy, one for each radiologist. Group ROC curves were also computed by 

averaging the parameters (a and b) of maximum-likelihood fitted univariate binormal ROC 

curves. 

3. Results and Discussion 

The radiologists achieved an average Az value (area under the ROC curve) of 0.72 reviewing the 

mammograms alone without the computer aid. The computer calculated likelihood of 

malignancy had an average Az value of 0.79. The four ROC curves of the computer-calculated 

likelihood of malignancy based on each radiologist's indication of calcifications (via a box over 

the mammogram) were highly similar. In a previous study of digitized screen-film 

mammograms, this computer technique achieved an Az value of 0.80 (Jiang et al. 1999). These 

results are important because they suggest that the computer calculation was able to perform 

consistently on FFDM images as on digitized screen-film mammograms without modification to 

the computer technique or retraining of the neural network classifier. 

The radiologists achieved an average Az value of 0.76 reviewing the mammograms with the aid 

of the computer-calculated likelihood of malignancy. While this performance was better than 



their unaided performance, this improvement was not statistically significant, and we did not find 

any other differences in Az values to be statistically significant. Relatively small numbers of 

cases and readers have limited the statistical power of this study and, therefore, the results should 

be considered as preliminary. 

4. Conclusions 

This preliminary study on computer classification of malignant and benign calcifications in 

FFDM images indicates that radiologists can interact with the computer technique easily to 

indicate suspicious calcifications and for the computer to estimate the likelihood of malignancy. 

The computer is able to perform accurately in this independent evaluation and achieve high 

performance on FFDM images even though the computer technique was developed and trained 

independently on digitized screen-film mammograms. These promising results indicate that this 

CADx technique can be potentially used clinically in diagnostic mammography to aid 

radiologists in analyzing calcifications. 
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What is the Required Pixel Size for Digital Mammography? 
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1. Introduction 

Pixel size is a critical issue in digital mammography, because it has a direct effect on the cost of 

systems, image quality, ease of use, and the performance of CAD schemes. It is generally 

accepted that high spatial resolution is needed in mammography to image accurately the often- 

subtle signs of cancer and to distinguish cancer from benign lesions. Pixel size has a direct 

bearing on the limiting resolution of a digital system, since spatial frequencies corresponding to 

the inverse of the pixel size (or more precisely the sampling frequency) are not imaged correctly. 

Spatial frequencies higher than the sampling frequency will be aliased. Pixel size also dictates 

the size of the image, since the image receptor for FFDM must be at least 18x24 cm. At 100- 

micron pixel size (and sampling distance), the image will be approximately 2048x2560 pixels 

and this size of image will conveniently fit on a high-resolution display. At 50-micron pixel size, 

the image will be four times larger. No display monitor exists that can display a full 50-micron 

FFDM image at full resolution. While high-resolution information exists in such an image, it 

cannot be easily viewed by a radiologist. Zooming with panning is needed. This could lead to 

longer reading times and poorer ergonomic designed display systems. Furthermore, the cost of 

designing and building a 50-micron FFDM system is substantially greater than a 100-micron 

system, as there are significant technological barriers to using small pixels. Finally, CAD is 

likely to be an integral part of FFDM systems in the future. The performance of CAD schemes 

may be influenced by the pixel size of the image. 

1 



In this paper, we examine the issue of the required pixel size for digital mammography using 

results of several observer studies and experiments. Because of the importance of pixel size, 

there have been a number of studies investigating radiologists' performance and CAD 

performance on digitized images with different pixel size. These have been either for detecting 

calcifications or for classifying calcifications. Calcifications are used as the target lesion because 

it is believed that they provide a better test of the resolution of the system compared to mass 

lesions. This is true in general, although the margin of masses, in particular spiculations, require 

high spatial resolution to be imaged accurately. 

2. Detection of Calcifications 

2.1. Radiologists 

There has been one study examining radiologists' ability to detect calcification-like objects in a 

mammogram. Higashida et al. (Higashida et al, 1992) used glass beads 0.125 mm to 0.250 mm 

in size overlaying 5 cm of breast tissue. These were then imaged either on a screen-film system 

or on a computer radiography (CR) system, which had a 100-micron pixel size. Nine 

radiologists read the images. They found that the area under the receiver operating characteristic 

(ROC) curve was statistically significantly higher for screen-film mammography (0.82 versus 

0.72). 

In contrast, Nab et al. (Nab et al., 1992) compared radiologists ability to detect calcifications in 

screen-film mammograms and the same mammograms digitized at 100 microns, xx films, xx 



radiologists. They found not statistically significant difference between digitized film and the 

original films. 

2.2. Computer-Aided Detection (CADe) 

Chan et al. (Chan et al., 1994) studied the effect of pixel size on the ability of their CADe 

scheme to detect individual calcifications. They found as the pixel size decreased from 140 to 

105 to 70 to 35 microns that the performance of their CADe scheme improved, with a 

statistically significant improvement between 105 and 35 microns. 

3. Classification of Calcifications 

3.1. Radiologists 

Chan et al. (Chan et al., 2001) conducted an observer study to examine the effect of pixel size on 

radiologists ability to classify mammographic calcifications. They examined pixel sizes of 35, 

70, 105, and 140 microns. They found no statistically significant difference in terms of AUC 

between any pixel sizes. 

3.2. Computer-Aided Diagnosis (CADx) 

Chan et al. (Chan et al., 1996) conducted a study to examine the effect of pixel size on the 

performance of their computer-aided diagnosis (CADx) scheme. For pixel sizes of 35, 70, 105, 

and 140 microns, there were no statistically significant differences between any sizes. Further, 

in their study, they employed a fairly comprehensive set of texture features (using co-occurrence 

matrices) and morphological features. 



This result was also observed by Gavrielides et al., who conducted a smaller study on the 

comparing the performance of their own CADx scheme as a function of the pixel size of the 

image. They examined 30, 60, and 90-micron pixels. Considering the results of using manual 

segmentation and only cases with actual calcifications (as opposed to simulated clusters), their 

classifier obtained a percent correct of 48, 76 and 80 for 30, 60, and 90 micron pixels. Again, a 

smaller pixel does not improve performance of CADx schemes. 

4. Significance of These Observer Studies 

With few exceptions, pixels size of 30 - 100 microns has little effect on performance of 

radiologists and CADx schemes in classifying calcifications. However, for CADe schemes and 

perhaps radiologists, smaller pixel size produces better performance. This is contrary to the 

prevailing thought on pixel size, where it is assumed that to detect a calcification lower spatial 

resolution can be used because you do not need to know the shape of the calcification in order to 

detected it, but classification requires higher resolution in order to determine the shape of the 

calcification. 

One possible explanation of this paradox is two fold. First shape is not a reliable 

diagnostic feature for discriminating between benign and malignant calcification, except on a 

somewhat gross scale. Second, detection of an object is really a classification task to 

differentiate an actual calcification from a false positive (caused by noise, artifact, or normal 

breast structures). We will address this two statements below 

5. Importance of Calcification Shape 



Jiang et al. (Jiang et al., 1999) performed an observer study to compare radiologists' ability to 

classify mammographic calcifications with and without a computer aid. In their study, the 

radiologists read the four standard screening views and magnification views, all using the 

original films. Magnifying glasses and a bright light were available and the location of the 

cluster in question was marked on each film. Their CADx scheme used the original screening 

views only digitized at only 100 microns. That is, radiologists had more information available to 

them than the CADx had. 

The computer used eight features extracted from the mammograms. They were: xxx. Note the 

only feature related to shape is whether the calcification was linear or not. The results were that 

computer out performed the radiologist, with AUC of 0.80 compared to xx for the radiologists. 

This implies that the shape of the calcification is not a necessary diagnostic feature, except on a 

somewhat gross scale - whether the calcification is linear. 

Not only is shape not a necessary feature, but it is an unreliable feature to use to classify 

calcification because it is difficult to discern the shape from a mammogram. Reiser et al. have 

shown in a 2AFC experiment that the to discriminate between two different shapes requires the 

image to have higher signal-to-noise ratio (SNR) than just to detect an object. Note that this 

experiment does not contract any early experiments since here the independent variable is SNR 

not pixel size or spatial resolution. They found that the more similar the objects, the higher the 

SNR need for accurate shape determination. For example, to choose between a star and circle of 

equal area and contrast, the SNR is 75% higher than the SNR required to detected either object. 

Their experiment did not include the effect of sampling with finite sized pixels. One would 



expect that as the size of the object approaches the size of the pixel, an even greater increase in 

SNR would be need to determine the object's shape. Therefore, for small calcifications that are 

somewhat subtle, there is unlikely to have sufficient SNR to allow its shape to be determined 

accurately, unless it is elongated as in a linear or branching calcification. Realistic 

mammographic backgrounds were not used in the Reiser experiment, so this effect still needs to 

be studied. 

6. Detection is a Classification Task 

Detection of a calcification is also a classification task. This is well known by those developing 

CADe schemes, because the computer has to determine whether a detected object is an actual 

lesion or a false positive. This is the likely explanation for the result of Chan et al. (Chan et al., 

1994) Their detection scheme required high spatial frequency information to correctly identify 

false positives. For example, artifacts on the film, such as emulsion pick off, appear on the 

mammogram as a small very shape, very high contrast objects — sharper and higher in contrast 

than actual calcifications. Therefore, they can easily be identified as an artifact (a potential false 

positive). However, when the film is digitized, the artifact becomes blurred and its contrast is 

reduced - the amount is dependent on the pixel size. Therefore, for larger pixel sizes, the artifact 

can look like a calcification and is more likely to be identified as an actual calcification (i.e., a 

false positive). 

A recent study by xx and Lowe that is consistent with higher spatial resolution for determining 

false positives. In their study, they examined eye-tracking data of radiologists reading 

mammograms. They then analyzed essentially the spatial frequency content of areas that 



radiologists dwelled upon. They found that for cases with no actual lesions, the radiologist 

examined areas with more high spatial frequency information, than in cases were a lesion was 

present. 

7. Pixel Size versus SNR 

In a digital image, the ultimate limit to detecting or characterizing an object is SNR not spatial 

resolution, since, in a digital image, image processing can be used to increase high spatial 

frequency information. This assumes that the object is bigger than the pixel size. Therefore, it is 

more important to examine SNR as a function of spatial frequency than to examine pixel size 

exclusively. This can be done using the concept of noise equivalent quanta (NEQ) or to 

determine a task-based SNR (ICRU, 1996). We hypothesize that the mid-frequency information 

(between 1 cycle/mm and 3-4 cycles/mm) is more important factor than pixel size by itself. 

8. Conclusions 

Contrary to conventional wisdom, accurate classification of microcalcifications can be 

performed using 100 micron pixel size, whereas for computer-aided detection of 

microcalcifications smaller pixel sizes will improve performance by reducing the false positive 

rate. The larger pixel size for classification implies that the shape of microcalcifications is not a 

reliable feature for differentiating benign and malignant calcifications. Finally, we believe that 

high SNR at intermediate spatial frequencies is more important than pixel size in determining 

performance of radiologists and computers in detecting and classifying breast lesions, but this 

still needs to be demonstrated. 
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Abstract. We compare two methods of training artificial neural networks (ANNs) that potentially 
reduce the risk of the neural network overfitting the training data set. We refer to these methods as 
training with jitter. In one method of training with jitter, a new random noise vector is added to each 
training-data vector between successive iterations. In this work, we propose a different method of 
training with jitter, in which instead of adding different random noise vectors between iterations, a 
number of random vectors are used to expand the training data set prior to training. This artificially 
expanded data set is then used to train the artificial neural network in the conventional manner. These 
two methods are compared to the conventional method of training artificial neural networks. We find 
that although training with a single expanded training data set does increase the performance of the 
neural networks, overfitting can still occur after a large number of training iterations. © 2004 CARS 
and Elsevier B.V. All rights reserved. 
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1. Introduction 

Artificial neural networks (ANNs) are popular classification algorithms in computer- 
aided diagnosis because of their ability to "learn" classification rules from a set of 
training data. However, ANNs run the risk of learning the training data too closely, 
resulting in networks that do not perform well when presented with new, unknown data. 
This problem is known as overfitting, and numerous methods exist to guard against it [1]. 
For example, limiting the number of hidden layers and hidden nodes reduces the chances 
of overfitting. 

Training with jitter may help an ANN generalize well on new data [2,3]. Because each 
training data set is a finite sample from the underlying population, it may not represent that 
population accurately. Training with jitter increases the size of the training data set by 
supplementing it with additional artificial data that is similar to, but different from, the real 
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training data. This can cause the data set to appear smoother to the ANN. If this smooth, 
though partially artificial, data set approximates the underlying population, then the ANN 
may perform better when presented with new data. 

Previously, we trained ANNs with jitter by adding a random noise vector to each 
training input vector. Before each training iteration, a new, zero-mean random noise vector 
was drawn from a Gaussian distribution. In this way, after a large number of iterations, the 
artificial neural network was presented with a large number of "jittered" training cases, in 
effect increasing the size of the training data set. In the work repeated here, we compare 
this method with a simpler version. Rather than select a new random noise vector for each 
iteration, we instead add a large number of artificial cases before training the neural 
network in the conventional manner. 

2. Method 

We trained eight artificial neural networks, each with different initial weights, on 
simulated data. Each neural network had two input nodes, a single hidden layer with 10 
hidden nodes, and a single output node. Although 10 hidden nodes may have been too 
many for our simple problem, we were attempting to investigate overfitting, and more free 
parameters in the algorithm makes overfitting more likely. Training was stopped after 
12,500 iterations, because by then overfitting was usually evident. The performance of 
each ANN was tested using a large test data set drawn from the same population. The 
results were characterized using receiver operating characteristic (ROC) analysis. The 
performance was indexed by Az, the area under the maximum-likelihood-fit binormal 
ROC curve. 

Our first method of training with jitter required the addition of a random noise vector to 
each training input vector. After each iteration, a new random noise vector was added to 
the original input vector. Thus, as the artificial neural network is being trained the training 
input vector moves, or jitters, around the original input vector in feature space. The 
random noise vectors were drawn from a zero-mean Gaussian distribution, the variance of 
which was a parameter specified by the user. We investigated various variance values to 
evaluate the dependence of the performance on this parameter. 

To use our new method to train artificial neural networks, we added many independent 
random noise vectors into the training data set prior to training. Thus, a single large, 
partially artificial data set was used to train the ANNs in the conventional way. 

Simulated data sets were used to train and test our artificial neural networks. We used 
XOR distributions because they are a simple-to-understand, two-dimensional distribution 
that has a nonlinear optimal decision boundary. The normal and abnormal distributions 
were each composed of two Gaussian probability densities. The means of the four 
Gaussians were arranged in a square, with the normal cases drawn from Gaussian 
distributions centered at the bottom-left and top-right corners while the abnormal cases 
drawn from Gaussian distributions centered at the bottom-right and top-left corners. 
Because the XOR distributions are two-dimensional, the data was comprised of two 
features. 

For training, 10 normal and 10 abnormal cases were drawn from the underlying 
distributions. Although this is a small data set, we expect a small number of training cases 



R.M. Zur et al. / International Congress Series 1268 (2004) 886-889 

Table 1 
Results of training ANNs in the conventional manner, with continuously changing jitter, and with our new 
method of adding jitter prior to conventional training 

Training method Number of training cases 
(training cases + "jitter" cases) 

Average maximum 
performance [Az] 

Jitter variance 

Conventional 20 
Jitter 20 
Prior-to-training 20 + 20 
Jitter 20 + 60 

20+140 
20 + 300 
20 + 620 
20+1260 

0.723 
0.770 
0.758 
0.753 
0.750 
0.757 
0.754 
0.747 

N/A 
0.08 
0.04 
0.09 
0.11 
0.06 
0.10 
0.07 

to inadequately represent the underlying population, thus allowing the ANNs to overfit 
more easily. For testing, 1000 normal and 1000 abnormal cases were drawn from the same 
pair of bimodal underlying distributions. The large number of testing cases was employed 
to ensure that a precise estimate of performance was obtained. 

3. Results 

For eight ANNs trained in the conventional manner, without jitter, the average 
maximum Az was 0.723 on the testing data set. By training with the continually added 
jitter, the average maximum performance of the ANNs increased to an Az of 0.770 when 
jitter of variance 0.08 was added. Because the Az value fluctuated with successive training 
iterations, we fitted a 9th-order polynomial to smooth the results. The maximum of the 
polynomial was taken as the maximum performance. 

The results are summarized in Table 1. The same 20 training cases were used for 
training in the conventional method as well as the original method of training with jitter. 
For adding jitter using our new method, we used the original 20 training cases with 20, 60, 
140, etc. artificial "jitter" cases added prior to training. For the results from adding jitter, 
we show the maximum average Az attained as well as the jitter variance that attained that 
performance. 

4. Conclusions 

In conclusion, we find that adding jitter as a preliminary step to neural network training 
can increase the performance of ANNs. Training with continually changing jitter seems to 
give better performance, but both show improvement overtraining without jitter. In fact, in 
our simple simulation, even a small increase in the number of training samples prior to 
training the networks provided an increase in performance. The method of training with 
jitter added prior to training, however, showed evidence of overfitting after a large number 
of training iterations. 

While this result may be valid in general, our work is still preliminary. Further 
investigation of more realistic conditions, such as larger data sets with more features 
and more complicated distributions, is required. 
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